企业🤖AI Agent构建引擎,智能编排和调试,一键部署,支持私有化部署方案 广告
[TOC] # linux内存模型 对于32位环境,理论上程序可以拥有 4GB 的虚拟地址空间,我们在C语言中使用到的变量、函数、字符串等都会对应内存中的一块区域。 但是,在这 4GB 的地址空间中,要拿出一部分给操作系统内核使用,应用程序无法直接访问这一段内存,这一部分内存地址被称为内核空间(Kernel Space)。 Windows 在默认情况下会将高地址的 2GB 空间分配给内核(也可以配置为1GB),而 Linux 默认情况下会将高地址的 1GB 空间分配给内核。也就是说,应用程序只能使用剩下的 2GB 或 3GB 的地址空间,称为用户空间(User Space)。 ## Linux下32位环境的用户空间内存分布情况 我们暂时不关心内核空间的内存分布情况,下图是Linux下32位环境的一种经典内存模型: ![](https://box.kancloud.cn/75e520fc7c02bed33b93ccac9c4b8157_720x634.png) 对各个内存分区的说明: ![](https://box.kancloud.cn/4cb3c48ab116310a046df4a392c24936_1113x366.png) 在这些内存分区中(暂时不讨论动态链接库),程序代码区用来保存指令,常量区、全局数据区、堆、栈都用来保存数据。对内存的研究,重点是对数据分区的研究。 程序代码区、常量区、全局数据区在程序加载到内存后就分配好了,并且在程序运行期间一直存在,不能销毁也不能增加(大小已被固定),只能等到程序运行结束后由操作系统收回,所以全局变量、字符串常量等在程序的任何地方都能访问,因为它们的内存一直都在。 > 常量区和全局数据区有时也被合称为静态数据区,意思是这段内存专门用来保存数据,在程序运行期间一直存在。 函数被调用时,会将参数、局部变量、返回地址等与函数相关的信息压入栈中,函数执行结束后,这些信息都将被销毁。所以局部变量、参数只在当前函数中有效,不能传递到函数外部,因为它们的内存不在了。 常量区、全局数据区、栈上的内存由系统自动分配和释放,不能由程序员控制。程序员唯一能控制的内存区域就是堆(Heap):它是一块巨大的内存空间,常常占据整个虚拟空间的绝大部分,在这片空间中,程序可以申请一块内存,并自由地使用(放入任何数据)。堆内存在程序主动释放之前会一直存在,不随函数的结束而失效。在函数内部产生的数据只要放到堆中,就可以在函数外部使用。 # windows内存模型 在32位环境下,Windows 默认会将高地址的 2GB 空间分配给内核(也可以配置为1GB),而将剩下的 2GB 空间分配给用户程序。 不像 Linux,Windows 是闭源的,有版权保护,资料较少,不好深入研究每一个细节,至今仍有一些内部原理不被大家知晓。关于 Windows 地址空间的内存分布,官网上只给出了简单的说明: * 对于32位程序,内核占用较高的 2GB,剩下的 2GB 分配给用户程序; * 对于64位程序,内核占用最高的 248TB,用户程序占用最低的 8TB 下图是一个典型的 Windows 32位程序的内存分布: ![](https://box.kancloud.cn/a95b0ea94685bfeb749e02461968cbb9_296x851.png) 可以看到,Windows 的地址空间被分配给了各种 exe、dll 文件、堆、栈。其中 exe 文件一般位于 0x00400000 起始的地址;一部分 DLL 位于 0x10000000 起始的地址,如运行库 dll;还有一部分 DLL 位于接近 0x80000000 的位置,如系统 dll,Ntdll.dll、Kernel32.dll。 栈的位置则在 0x00030000 和 exe 文件后面都有分布,可能有读者奇怪为什么 Windows 需要这么多栈呢?我们知道,每个线程的栈都是独立的,所以一个进程中有多少个线程,就有多少个对应的栈,对于 Windows 来说,每个线程默认的栈大小是 1MB。 在分配完上面这些地址以后,Windows 的地址空间已经是支离破碎了。当程序向系统申请堆空间时,只好从这些剩下的还有没被占用的地址上分配。 Windows 64位程序的地址空间分布情况如下图所示: ![](https://box.kancloud.cn/d3b011a093aa28f79f45ddf8bbb87f8f_331x382.png)