排序操作和字符串格式化一样是很多程序经常使用的操作。尽管一个最短的快排程序只要 15 行就可以搞定,但是一个健壮的实现需要更多的代码,并且我们不希望每次我们需要的时候都重写或者拷贝这些代码。
幸运的是,sort 包内置的提供了根据一些排序函数来对任何序列排序的功能。它的设计非常独到。在很多语言中,排序算法都是和序列数据类型关联,同时排序函数和具体类型元素关联。
相比之下,Go语言的 sort.Sort 函数不会对具体的序列和它的元素做任何假设。相反,它使用了一个接口类型 sort.Interface 来指定通用的排序算法和可能被排序到的序列类型之间的约定。这个接口的实现由序列的具体表示和它希望排序的元素决定,序列的表示经常是一个切片。
一个内置的排序算法需要知道三个东西:序列的长度,表示两个元素比较的结果,一种交换两个元素的方式;这就是 sort.Interface 的三个方法:
~~~
package sort
type Interface interface {
Len() int // 获取元素数量
Less(i, j int) bool // i,j是序列元素的指数。
Swap(i, j int) // 交换元素
}
~~~
为了对序列进行排序,我们需要定义一个实现了这三个方法的类型,然后对这个类型的一个实例应用 sort.Sort 函数。思考对一个字符串切片进行排序,这可能是最简单的例子了。下面是这个新的类型 MyStringList 和它的 Len,Less 和 Swap 方法
~~~
type MyStringList []string
func (p MyStringList ) Len() int { return len(m) }
func (p MyStringList ) Less(i, j int) bool { return m[i] < m[j] }
func (p MyStringList ) Swap(i, j int) { m[i], m[j] = m[j], m[i] }
~~~
## 使用sort.Interface接口进行排序
对一系列字符串进行排序时,使用字符串切片(\[\]string)承载多个字符串。使用 type 关键字,将字符串切片(\[\]string)定义为自定义类型 MyStringList。为了让 sort 包能识别 MyStringList,能够对 MyStringList 进行排序,就必须让 MyStringList 实现 sort.Interface 接口。
下面是对字符串排序的详细代码(代码1):
~~~
package main
import (
"fmt"
"sort"
)
// 将[]string定义为MyStringList类型
type MyStringList []string
// 实现sort.Interface接口的获取元素数量方法
func (m MyStringList) Len() int {
return len(m)
}
// 实现sort.Interface接口的比较元素方法
func (m MyStringList) Less(i, j int) bool {
return m[i] < m[j]
}
// 实现sort.Interface接口的交换元素方法
func (m MyStringList) Swap(i, j int) {
m[i], m[j] = m[j], m[i]
}
func main() {
// 准备一个内容被打乱顺序的字符串切片
names := MyStringList{
"3. Triple Kill",
"5. Penta Kill",
"2. Double Kill",
"4. Quadra Kill",
"1. First Blood",
}
// 使用sort包进行排序
sort.Sort(names)
// 遍历打印结果
for _, v := range names {
fmt.Printf("%s\n", v)
}
}
~~~
代码输出结果:
~~~
1. First Blood
2. Double Kill
3. Triple Kill
4. Quadra Kill
5. Penta Kill
~~~
代码说明如下:
* 第 9 行,接口实现不受限于结构体,任何类型都可以实现接口。要排序的字符串切片 \[\]string 是系统定制好的类型,无法让这个类型去实现 sort.Interface 排序接口。因此,需要将 \[\]string 定义为自定义的类型。
* 第 12 行,实现获取元素数量的 Len() 方法,返回字符串切片的元素数量。
* 第 17 行,实现比较元素的 Less() 方法,直接取 m 切片的 i 和 j 元素值进行小于比较,并返回比较结果。
* 第 22 行,实现交换元素的 Swap() 方法,这里使用Go语言的多变量赋值特性实现元素交换。
* 第 29 行,由于将 \[\]string 定义成 MyStringList 类型,字符串切片初始化的过程等效于下面的写法:
~~~
names := []string {
"3. Triple Kill",
"5. Penta Kill",
"2. Double Kill",
"4. Quadra Kill",
"1. First Blood",
}
~~~
* 第 38 行,使用 sort 包的 Sort() 函数,将 names(MyStringList类型)进行排序。排序时,sort 包会通过 MyStringList 实现的 Len()、Less()、Swap() 这 3 个方法进行数据获取和修改。
* 第 41 行,遍历排序好的字符串切片,并打印结果。
## 常见类型的便捷排序
通过实现 sort.Interface 接口的排序过程具有很强的可定制性,可以根据被排序对象比较复杂的特性进行定制。例如,需要多种排序逻辑的需求就适合使用 sort.Interface 接口进行排序。但大部分情况中,只需要对字符串、整型等进行快速排序。Go语言中提供了一些固定模式的封装以方便开发者迅速对内容进行排序。
#### 1) 字符串切片的便捷排序
sort 包中有一个 StringSlice 类型,定义如下:
~~~
type StringSlice []string
func (p StringSlice) Len() int { return len(p) }
func (p StringSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p StringSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p StringSlice) Sort() { Sort(p) }
~~~
sort 包中的 StringSlice 的代码与 MyStringList 的实现代码几乎一样。因此,只需要使用 sort 包的 StringSlice 就可以更简单快速地进行字符串排序。将代码1中的排序代码简化后如下所示:
~~~
names := sort.StringSlice{
"3. Triple Kill",
"5. Penta Kill",
"2. Double Kill",
"4. Quadra Kill",
"1. First Blood",
}
sort.Sort(names)
~~~
简化后,只要两句代码就实现了字符串排序的功能。
#### 2) 对整型切片进行排序
除了字符串可以使用 sort 包进行便捷排序外,还可以使用 sort.IntSlice 进行整型切片的排序。sort.IntSlice 的定义如下:
~~~
type IntSlice []int
func (p IntSlice) Len() int { return len(p) }
func (p IntSlice) Less(i, j int) bool { return p[i] < p[j] }
func (p IntSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
// Sort is a convenience method.
func (p IntSlice) Sort() { Sort(p) }
~~~
sort 包在 sort.Interface 对各类型的封装上还有更进一步的简化,下面使用 sort.Strings 继续对代码1进行简化,代码如下:
~~~
names := []string{
"3. Triple Kill",
"5. Penta Kill",
"2. Double Kill",
"4. Quadra Kill",
"1. First Blood",
}
sort.Strings(names)
// 遍历打印结果
for _, v := range names {
fmt.Printf("%s\n", v)
}
~~~
代码说明如下:
* 第 1 行,需要排序的字符串切片。
* 第 9 行,使用 sort.Strings 直接对字符串切片进行排序。
#### 3) sort包内建的类型排序接口一览
Go语言中的 sort 包中定义了一些常见类型的排序方法,如下表所示。
| 类 型 | 实现 sort.lnterface 的类型 | 直接排序方法 | 说 明 |
| --- | --- | --- | --- |
| 字符串(String) | StringSlice | sort.Strings(a \[\] string) | 字符 ASCII 值升序 |
| 整型(int) | IntSlice | sort.Ints(a \[\]int) | 数值升序 |
| 双精度浮点(float64) | Float64Slice | sort.Float64s(a \[\]float64) | 数值升序 |
编程中经常用到的 int32、int64、float32、bool 类型并没有由 sort 包实现,使用时依然需要开发者自己编写。
## 对结构体数据进行排序
除了基本类型的排序,也可以对结构体进行排序。结构体比基本类型更为复杂,排序时不能像数值和字符串一样拥有一些固定的单一原则。结构体的多个字段在排序中可能会存在多种排序的规则,例如,结构体中的名字按字母升序排列,数值按从小到大的顺序排序。一般在多种规则同时存在时,需要确定规则的优先度,如先按名字排序,再按年龄排序等。
#### 1) 完整实现sort.Interface进行结构体排序
将一批英雄名单使用结构体定义,英雄名单的结构体中定义了英雄的名字和分类。排序时要求按照英雄的分类进行排序,相同分类的情况下按名字进行排序,详细代码实现过程如下。
结构体排序代码(代码2):
~~~
package main
import (
"fmt"
"sort"
)
// 声明英雄的分类
type HeroKind int
// 定义HeroKind常量, 类似于枚举
const (
None HeroKind = iota
Tank
Assassin
Mage
)
// 定义英雄名单的结构
type Hero struct {
Name string // 英雄的名字
Kind HeroKind // 英雄的种类
}
// 将英雄指针的切片定义为Heros类型
type Heros []*Hero
// 实现sort.Interface接口取元素数量方法
func (s Heros) Len() int {
return len(s)
}
// 实现sort.Interface接口比较元素方法
func (s Heros) Less(i, j int) bool {
// 如果英雄的分类不一致时, 优先对分类进行排序
if s[i].Kind != s[j].Kind {
return s[i].Kind < s[j].Kind
}
// 默认按英雄名字字符升序排列
return s[i].Name < s[j].Name
}
// 实现sort.Interface接口交换元素方法
func (s Heros) Swap(i, j int) {
s[i], s[j] = s[j], s[i]
}
func main() {
// 准备英雄列表
heros := Heros{
&Hero{"吕布", Tank},
&Hero{"李白", Assassin},
&Hero{"妲己", Mage},
&Hero{"貂蝉", Assassin},
&Hero{"关羽", Tank},
&Hero{"诸葛亮", Mage},
}
// 使用sort包进行排序
sort.Sort(heros)
// 遍历英雄列表打印排序结果
for _, v := range heros {
fmt.Printf("%+v\n", v)
}
}
~~~
代码输出如下:
~~~
&{Name:关羽 Kind:1}
&{Name:吕布 Kind:1}
&{Name:李白 Kind:2}
&{Name:貂蝉 Kind:2}
&{Name:妲己 Kind:3}
&{Name:诸葛亮 Kind:3}
~~~
代码说明如下:
* 第 9 行,将 int 声明为 HeroKind 英雄类型,后面会将这个类型当做枚举来使用。
* 第 13 行,定义一些英雄类型常量,可以理解为枚举的值。
* 第 26 行,为了方便实现 sort.Interface 接口,将 \[\]\*Hero 定义为 Heros 类型。
* 第 29 行,Heros 类型实现了 sort.Interface 的 Len() 方法,返回英雄的数量。
* 第 34 行,Heros 类型实现了 sort.Interface 的 Less() 方法,根据英雄字段的比较结果决定如何排序。
* 第 37 行,当英雄的分类不一致时,优先按分类的枚举数值从小到大排序。
* 第 42 行,英雄分类相等的情况下,默认根据英雄的名字字符升序排序。
* 第 46 行,Heros 类型实现了 sort.Interface 的 Swap() 方法,交换英雄元素的位置。
* 第 53~60 行,准备一系列英雄数据。
* 第 63 行,使用 sort 包进行排序。
* 第 66 行,遍历所有排序完成的英雄数据。
#### 2) 使用sort.Slice进行切片元素排序
从 Go 1.8 开始,Go语言在 sort 包中提供了 sort.Slice() 函数进行更为简便的排序方法。sort.Slice() 函数只要求传入需要排序的数据,以及一个排序时对元素的回调函数,类型为 func(i,j int)bool,sort.Slice() 函数的定义如下:
~~~
func Slice(slice interface{}, less func(i, j int) bool)
~~~
使用 sort.Slice() 函数,对代码2重新优化的完整代码如下:
~~~
package main
import (
"fmt"
"sort"
)
type HeroKind int
const (
None = iota
Tank
Assassin
Mage
)
type Hero struct {
Name string
Kind HeroKind
}
func main() {
heros := []*Hero{
{"吕布", Tank},
{"李白", Assassin},
{"妲己", Mage},
{"貂蝉", Assassin},
{"关羽", Tank},
{"诸葛亮", Mage},
}
sort.Slice(heros, func(i, j int) bool {
if heros[i].Kind != heros[j].Kind {
return heros[i].Kind < heros[j].Kind
}
return heros[i].Name < heros[j].Name
})
for _, v := range heros {
fmt.Printf("%+v\n", v)
}
}
~~~
第 33 行到第 39 行加粗部分是新添加的 sort.Slice() 及回调函数部分。对比前面的代码,这里去掉了 Heros 及接口实现部分的代码。
使用 sort.Slice() 不仅可以完成结构体切片排序,还可以对各种切片类型进行自定义排序。
- 1.Go语言环境搭建
- 1.1 安装与环境
- 1.2 国内镜像配置
- 1.3 IDE的选择
- 2.Go语言基础语法
- 2.1 Go语言变量的声明
- 2.2 Go语言变量的初始化
- 2.3 Go语言多个变量同时赋值
- 2.4 Go语言匿名变量
- 2.5 Go语言变量的作用域
- 2.6 Go语言整型
- 2.7 Go语言浮点类型
- 2.8 Go语言复数
- 2.9 Go语言输出正弦函数(Sin)图像
- 2.10 Go语言bool类型
- 2.11 Go语言字符串
- 2.12 Go语言字符类型
- 2.13 Go语言数据类型转换
- 2.14 Go语言指针详解
- 2.15 Go语言变量逃逸分析
- 2.16 Go语言变量的生命周期
- 2.17 Go语言常量和const关键字
- 2.18 Go语言模拟枚举
- 2.19 Go语言type关键字
- 2.20 Go语言注释的定义及使用
- 2.21 Go语言关键字与标识符简述
- 2.22 Go语言运算符的优先级
- 2.23 Go语言strconv包
- 3.Go语言容器
- 3.1 Go语言数组详解
- 3.2 Go语言多维数组简述
- 3.3 Go语言切片详解
- 3.4 Go语言append()为切片添加元素
- 3.5 Go语言切片复制
- 3.6 Go语言从切片中删除元素
- 3.7 Go语言range关键字
- 3.8 Go语言多维切片简述
- 3.9 Go语言map
- 3.10 Go语言遍历map
- 3.11 Go语言map元素的删除和清空
- 3.12 Go语言sync.Map
- 3.13 Go语言list
- 3.14 Go语言nil
- 3.15 Go语言make和new关键字的区别及实现原理
- 4.Go语言流程控制
- 4.1 Go语言分支结构
- 4.2 Go语言循环结构
- 4.3 Go语言输出九九乘法表
- 4.4 Go语言键值循环
- 4.5 Go语言switch语句
- 4.6 Go语言goto语句
- 4.7 Go语言break
- 4.8 Go语言continue
- 4.9 Go语言聊天机器人
- 4.10 Go语言词频统计
- 4.11 Go语言缩进排序
- 4.12 Go语言实现二分查找算法
- 4.13 Go语言冒泡排序
- 5.Go语言函数
- 5.1 Go语言函数声明
- 5.2 Go语言将秒转换为具体的时间
- 5.3 Go语言函数中的参数传递效果测试
- 5.4 Go语言函数变量
- 5.5 Go语言字符串的链式处理
- 5.6 Go语言匿名函数
- 5.7 Go语言函数类型实现接口
- 5.8 Go语言闭包(Closure)
- 5.9 Go语言可变参数(变参函数)
- 5.10 Go语言defer(延迟执行语句)
- 5.11 Go语言递归函数
- 5.12 Go语言处理运行时错误
- 5.13 Go语言宕机(panic)
- 5.14 Go语言宕机恢复(recover)
- 5.15 Go语言计算函数执行时间
- 5.16 Go语言通过内存缓存来提升性能
- 5.17 Go语言函数的底层实现
- 5.18 Go语言Test功能测试函数详解
- 6.Go语言结构体
- 6.1 Go语言结构体定义
- 6.2 Go语言实例化结构体
- 6.3 Go语言初始化结构体的成员变量
- 6.4 Go语言构造函数
- 6.5 Go语言方法和接收器
- 6.6 Go语言为任意类型添加方法
- 6.7 Go语言使用事件系统实现事件的响应和处理
- 6.8 Go语言类型内嵌和结构体内嵌
- 6.9 Go语言结构体内嵌模拟类的继承
- 6.10 Go语言初始化内嵌结构体
- 6.11 Go语言内嵌结构体成员名字冲突
- 6.12 Go语言使用匿名结构体解析JSON数据
- 6.13 Go语言垃圾回收和SetFinalizer
- 6.14 Go语言将结构体数据保存为JSON格式数据
- 6.15 Go语言链表操作
- 6.16 Go语言数据I/O对象及操作
- 7.Go语言接口
- 7.1 Go语言接口声明
- 7.2 Go语言实现接口的条件
- 7.3 Go语言类型与接口的关系
- 7.4 Go语言类型断言简述
- 7.5 Go语言实现日志系统
- 7.6 Go语言排序
- 7.7 Go语言接口的嵌套组合
- 7.8 Go语言接口和类型之间的转换
- 7.9 Go语言空接口类型
- 7.10 Go语言使用空接口实现可以保存任意值的字典
- 7.11 Go语言类型分支
- 7.12 Go语言error接口
- 7.13 Go语言接口内部实现
- 7.14 Go语言表达式求值器
- 7.15 Go语言实现Web服务器
- 7.16 Go语言音乐播放器
- 7.17 Go语言实现有限状态机(FSM)
- 7.18 Go语言二叉树数据结构的应用
- 8.Go语言包
- 8.1 Go语言包的基本概念
- 8.2 Go语言封装简介及实现细节
- 8.3 Go语言GOPATH详解
- 8.4 Go语言常用内置包简介
- 8.5 Go语言自定义包
- 8.6 Go语言package
- 8.7 Go语言导出包中的标识符
- 8.8 Go语言import导入包
- 8.9 Go语言工厂模式自动注册
- 8.10 Go语言单例模式简述
- 8.11 Go语言sync包与锁
- 8.12 Go语言big包
- 8.13 Go语言使用图像包制作GIF动画
- 8.14 Go语言正则表达式
- 8.15 Go语言time包
- 8.16 Go语言os包用法简述
- 8.17 Go语言flag包
- 8.18 Go语言go mod包依赖管理工具使用详解
- 8.19 Go语言生成二维码
- 8.20 Go语言Context(上下文)
- 8.21 客户信息管理系统
- 8.22 Go语言发送电子邮件
- 8.23 Go语言(Pingo)插件化开发
- 8.24 Go语言定时器实现原理及作用
- 9.Go语言并发
- Go语言并发简述(并发的优势)
- Go语言goroutine(轻量级线程)
- Go语言并发通信
- Go语言竞争状态简述
- Go语言GOMAXPROCS(调整并发的运行性能)
- 并发和并行的区别
- goroutine和coroutine的区别
- Go语言通道(chan)——goroutine之间通信的管道
- Go语言并发打印(借助通道实现)
- Go语言单向通道——通道中的单行道
- Go语言无缓冲的通道
- Go语言带缓冲的通道
- Go语言channel超时机制
- Go语言通道的多路复用——同时处理接收和发送多个通道的数据
- Go语言RPC(模拟远程过程调用)
- Go语言使用通道响应计时器的事件
- Go语言关闭通道后继续使用通道
- Go语言多核并行化
- Go语言Telnet回音服务器——TCP服务器的基本结构
- Go语言竞态检测——检测代码在并发环境下可能出现的问题
- Go语言互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
- Go语言等待组(sync.WaitGroup)
- Go语言死锁、活锁和饥饿概述
- Go语言封装qsort快速排序函数
- Go语言CSP:通信顺序进程简述
- Go语言聊天服务器
- 10.Go语言反射
- Go语言反射(reflection)简述
- Go语言反射规则浅析
- Go语言reflect.TypeOf()和reflect.Type(通过反射获取类型信息)
- Go语言reflect.Elem()——通过反射获取指针指向的元素类型
- Go语言通过反射获取结构体的成员类型
- Go语言结构体标签(Struct Tag)
- Go语言reflect.ValueOf()和reflect.Value(通过反射获取值信息)
- Go语言通过反射访问结构体成员的值
- Go语言IsNil()和IsValid()——判断反射值的空和有效性
- Go语言通过反射修改变量的值
- Go语言通过类型信息创建实例
- Go语言通过反射调用函数
- Go语言inject库:依赖注入
- 11.Go语言网络编程
- Go语言Socket编程详解
- Go语言Dial()函数:建立网络连接
- Go语言ICMP协议:向主机发送消息
- Go语言TCP协议
- Go语言DialTCP():网络通信
- Go语言HTTP客户端实现简述
- Go语言服务端处理HTTP、HTTPS请求
- Go语言RPC协议:远程过程调用
- 如何设计优雅的RPC接口
- Go语言解码未知结构的JSON数据
- Go语言如何搭建网站程序
- Go语言开发一个简单的相册网站
- Go语言数据库(Database)相关操作
- 示例:并发时钟服务器
- Go语言router请求路由
- Go语言middleware:Web中间件
- Go语言常见大型Web项目分层(MVC架构)
- Go语言Cookie的设置与读取
- Go语言获取IP地址和域名解析
- Go语言TCP网络程序设计
- Go语言UDP网络程序设计
- Go语言IP网络程序设计
- Go语言是如何使得Web工作的
- Go语言session的创建和管理
- Go语言Ratelimit服务流量限制
- Go语言WEB框架(Gin)详解
- 12.Go语言文件处理
- Go语言自定义数据文件
- Go语言JSON文件的读写操作
- Go语言XML文件的读写操作
- Go语言使用Gob传输数据
- Go语言纯文本文件的读写操作
- Go语言二进制文件的读写操作
- Go语言自定义二进制文件的读写操作
- Go语言zip归档文件的读写操作
- Go语言tar归档文件的读写操作
- Go语言使用buffer读取文件
- Go语言并发目录遍历
- Go语言从INI配置文件中读取需要的值
- Go语言文件的写入、追加、读取、复制操作
- Go语言文件锁操作
- 13.Go语言网络爬虫
- Go语言网络爬虫概述
- Go语言网络爬虫中的基本数据结构
- Go语言网络爬虫的接口设计
- Go语言网络爬虫缓冲器工具的实现
- Go语言网络爬虫缓冲池工具的实现
- Go语言网络爬虫多重读取器的实现
- Go语言网络爬虫内部基础接口
- Go语言网络爬虫组件注册器
- Go语言网络爬虫下载器接口
- Go语言网络爬虫分析器接口
- Go语言网络爬虫条目处理管道
- Go语言网络爬虫调度器的实现
- Go语言爬取图片小程序
- 14.Go语言编译和工具链
- go build命令(go语言编译命令)完全攻略
- go clean命令——清除编译文件
- go run命令——编译并运行
- go fmt命令——格式化代码文件
- go install命令——编译并安装
- go get命令——一键获取代码、编译并安装
- go generate命令——在编译前自动化生成某类代码
- go test命令(Go语言测试命令)完全攻略
- go pprof命令(Go语言性能分析命令)完全攻略
- 15.Go语言避坑与技巧
- goroutine(Go语言并发)如何使用才更加高效?
- Go语言反射——性能和灵活性的双刃剑
- Go语言接口的nil判断
- Go语言map的多键索引——多个数值条件可以同时查询
- Go语言与C/C++进行交互
- Go语言文件读写
- Json数据编码和解码
- Go语言使用select切换协程
- Go语言加密通信
- Go语言内存管理简述
- Go语言垃圾回收
- Go语言哈希函数
- Go语言分布式id生成器
- 部署Go语言程序到Linux服务器
- Go语言实现RSA和AES加解密
