RPC 是一种方便的网络通信编程模型,由于和编程语言的高度结合,大大减少了处理网络数据的复杂度,让代码可读性也有可观的提高。但是 RPC 本身的构成却比较复杂,由于受到编程语言、网络模型、使用习惯的约束,有大量的妥协和取舍之处。
RPC 框架的讨论一直是各个技术交流群中的热点话题,例如阿里的 dubbo、新浪微博的 motan、谷歌的 grpc 以及不久前蚂蚁金服开源的 sofa 都是比较出名的 RPC 框架。
## 认识 RPC(远程调用)
我们在各种操作系统、编程语言生态圈中,多少都会接触过“远程调用”的概念。一般来说,它们指的是用一行简单的代码,通过网络调用另外一个计算机上的某段程序。比如:
* RMI(Remote Method Invoke):调用远程的方法,“方法”一般是附属于某个对象上的,所以通常 RMI 指对在远程的计算机上的某个对象,进行其方法函数的调用。
* RPC(Remote Procedure Call):远程过程调用,指的是对网络上另外一个计算机上的,某段特定的函数代码的调用。
远程调用本身是网络通信的一种概念,它的特点是把网络通信封装成一个类似函数的调用。网络通信在远程调用外,一般还有其他的几种概念:数据包处理、消息队列、流过滤、资源拉取等待,它们的差异如下表所示:
| 方案 | 编程方式 | 信息封装 | 传输模型 | 典型应用 |
| --- | --- | --- | --- | --- |
| 远程调用 | 调用函数、输入参数、获得返回值 | 使用编程语言的变量、类型、函数 | 发出请求、获得响应 | [Java](http://c.biancheng.net/java/)RMI |
| 数据包处理 | 调用 Send()/Recv(),使用字节码数据、编解码、处理内容 | 把通信内容构造成二进制的协议包 | 发送/接收 | UDP 编程 |
| 消息队列 | 调用 Put()/Get(),使用“包”对象,处理其包含的内容 | 消息被封装成语言可用的对象或结构 | 对某队列存入一个消息或取出一个消息 | ActiveMQ |
| 流过滤 | 读取一个流或写出一个流,对流中的单元包即刻处理 | 单元长度很小的统一[数据结构](http://c.biancheng.net/data_structure/) | 连接、发送/接收、处理 | 网络视频 |
| 资源拉取 | 输入一个资源 ID,获得资源内容 | 请求或响应都包含:头部和正文 | 请求后等待响应 | WWW |
## 远程调用的优势
#### 1) 屏蔽了网络层
因此在传输协议和编码协议上,我们可以选择不同的方案。比如 WebService 方案就是用的 HTTP 传输协议 +SOAP 编码协议,而 REST 的方案往往使用 HTTP+JSON 协议。
Facebook 的 Thrift 可以定制任何不同的传输协议和编码协议,可以用 TCP+Google Protocol Buffer 也可以用 UDP+JSON 等。
由于屏蔽了网络层,可以根据实际需要来独立的优化网络部分,而无需涉及业务逻辑的处理代码,这对于需要在各种网络环境下运行的程序来说,非常有价值。
#### 2) 函数映射协议
可以直接用编程语言来书写数据结构和函数定义,取代编写大量的编码协议格式和分包处理逻辑。对于那些业务逻辑非常复杂的系统,比如网络游戏,可以节省大量定义消息格式的时间。
函数调用模型非常容易学习,不需要学习通信协议和流程,让经验较浅的程序员也能很容易的开始使用网络编程。
## 远程调用的缺点
#### 1) 增加了性能消耗
由于把网络通信包装成“函数”,需要大量额外的处理,比如需要预生产代码,或者使用反射机制。这些都是额外消耗 CPU 和内存的操作。而且为了表达复杂的数据类型,比如变长的类型 string/map/list,这些都要数据包中增加更多的描述性信息,则会占用更多的网络包长度。
#### 2) 不必要的复杂化
如果是为了某些特定的业务需求,比如传送一个固定的文件,那么应该用 HTTP/FTP 协议模型;如果为了做监控或者 IM 软件,用简单的消息编码收发会更快速高效;如果是为了做代理服务器,用流式的处理会很简单。另外,如果要做数据广播,那么消息队列会很容易做到,而远程调用这几乎无法完成。
因此,远程调用最适合是业务需求多变或者网络环境多变的场景。
## RPC 结构拆解
RPC 的结构如下图所示:

图:RPC 结构图
RPC 服务端通过 RpcServer 去导出(export)远程接口方法,而客户端通过 RpcClient 去引入(import)远程接口方法。客户端像调用本地方法一样去调用远程接口方法,RPC 框架提供接口的代理实现,实际的调用将委托给代理 RpcProxy,代理封装调用信息并将调用转交给 RpcInvoker 去实际执行。
在客户端的 RpcInvoker 通过连接器 RpcConnector 去维持与服务端的通道 RpcChannel,并使用 RpcProtocol 执行协议编码(encode)并将编码后的请求消息通过通道发送给服务端。
RPC 服务端接收器 RpcAcceptor 接收客户端的调用请求,同样使用 RpcProtocol 执行协议解码(decode),解码后的调用信息传递给 RpcProcessor 去控制处理调用过程,最后再委托调用给 RpcInvoker 去实际执行并返回调用结果。
RPC 各个组件的职责如下所示:
* RpcServer:负责导出(export)远程接口
* RpcClient:负责导入(import)远程接口的代理实现
* RpcProxy:远程接口的代理实现
* RpcInvoker:
* 客户方实现:负责编码调用信息和发送调用请求到服务方并等待调用结果返回
* 服务方实现:负责调用服务端接口的具体实现并返回调用结果
* RpcProtocol:负责协议编/解码
* RpcConnector:负责维持客户方和服务方的连接通道和发送数据到服务方
* RpcAcceptor:负责接收客户方请求并返回请求结果
* RpcProcessor:负责在服务方控制调用过程,包括管理调用线程池、超时时间等
* RpcChannel:数据传输通道
## RPC 接口设计
Go语言的 net/rpc 很灵活,它在数据传输前后实现了编码解码器的接口定义。这意味着,开发者可以自定义数据的传输方式以及 RPC 服务端和客户端之间的交互行为。
RPC 提供的编码解码器接口如下:
~~~
type ClientCodec interface { WriteRequest(*Request, interface{}) error ReadResponseHeader(*Response) error ReadResponseBody(interface{}) error Close() error}type ServerCodec interface { ReadRequestHeader(*Request) error ReadRequestBody(interface{}) error WriteResponse(*Response, interface{}) error Close() error}
~~~
接口 ClientCodec 定义了 RPC 客户端如何在一个 RPC 会话中发送请求和读取响应。客户端程序通过 WriteRequest() 方法将一个请求写入到 RPC 连接中,并通过 ReadResponseHeader() 和 ReadResponseBody() 读取服务端的响应信息。当整个过程执行完毕后,再通过 Close() 方法来关闭该连接。
接口 ServerCodec 定义了 RPC 服务端如何在一个 RPC 会话中接收请求并发送响应。服务端程序通过 ReadRequestHeader() 和 ReadRequestBody() 方法从一个 RPC 连接中读取请求信息,然后再通过 WriteResponse() 方法向该连接中的 RPC 客户端发送响应。当完成该过程后,通过 Close() 方法来关闭连接。
通过实现上述接口,我们可以自定义数据传输前后的编码解码方式,而不仅仅局限于 Gob。
同样,可以自定义 RPC 服务端和客户端的交互行为。实际上,Go标准库提供的 net/rpc/json 包,就是一套实现了 rpc.ClientCodec 和 rpc.ServerCodec 接口的 JSON-RPC 模块。
- 1.Go语言环境搭建
- 1.1 安装与环境
- 1.2 国内镜像配置
- 1.3 IDE的选择
- 2.Go语言基础语法
- 2.1 Go语言变量的声明
- 2.2 Go语言变量的初始化
- 2.3 Go语言多个变量同时赋值
- 2.4 Go语言匿名变量
- 2.5 Go语言变量的作用域
- 2.6 Go语言整型
- 2.7 Go语言浮点类型
- 2.8 Go语言复数
- 2.9 Go语言输出正弦函数(Sin)图像
- 2.10 Go语言bool类型
- 2.11 Go语言字符串
- 2.12 Go语言字符类型
- 2.13 Go语言数据类型转换
- 2.14 Go语言指针详解
- 2.15 Go语言变量逃逸分析
- 2.16 Go语言变量的生命周期
- 2.17 Go语言常量和const关键字
- 2.18 Go语言模拟枚举
- 2.19 Go语言type关键字
- 2.20 Go语言注释的定义及使用
- 2.21 Go语言关键字与标识符简述
- 2.22 Go语言运算符的优先级
- 2.23 Go语言strconv包
- 3.Go语言容器
- 3.1 Go语言数组详解
- 3.2 Go语言多维数组简述
- 3.3 Go语言切片详解
- 3.4 Go语言append()为切片添加元素
- 3.5 Go语言切片复制
- 3.6 Go语言从切片中删除元素
- 3.7 Go语言range关键字
- 3.8 Go语言多维切片简述
- 3.9 Go语言map
- 3.10 Go语言遍历map
- 3.11 Go语言map元素的删除和清空
- 3.12 Go语言sync.Map
- 3.13 Go语言list
- 3.14 Go语言nil
- 3.15 Go语言make和new关键字的区别及实现原理
- 4.Go语言流程控制
- 4.1 Go语言分支结构
- 4.2 Go语言循环结构
- 4.3 Go语言输出九九乘法表
- 4.4 Go语言键值循环
- 4.5 Go语言switch语句
- 4.6 Go语言goto语句
- 4.7 Go语言break
- 4.8 Go语言continue
- 4.9 Go语言聊天机器人
- 4.10 Go语言词频统计
- 4.11 Go语言缩进排序
- 4.12 Go语言实现二分查找算法
- 4.13 Go语言冒泡排序
- 5.Go语言函数
- 5.1 Go语言函数声明
- 5.2 Go语言将秒转换为具体的时间
- 5.3 Go语言函数中的参数传递效果测试
- 5.4 Go语言函数变量
- 5.5 Go语言字符串的链式处理
- 5.6 Go语言匿名函数
- 5.7 Go语言函数类型实现接口
- 5.8 Go语言闭包(Closure)
- 5.9 Go语言可变参数(变参函数)
- 5.10 Go语言defer(延迟执行语句)
- 5.11 Go语言递归函数
- 5.12 Go语言处理运行时错误
- 5.13 Go语言宕机(panic)
- 5.14 Go语言宕机恢复(recover)
- 5.15 Go语言计算函数执行时间
- 5.16 Go语言通过内存缓存来提升性能
- 5.17 Go语言函数的底层实现
- 5.18 Go语言Test功能测试函数详解
- 6.Go语言结构体
- 6.1 Go语言结构体定义
- 6.2 Go语言实例化结构体
- 6.3 Go语言初始化结构体的成员变量
- 6.4 Go语言构造函数
- 6.5 Go语言方法和接收器
- 6.6 Go语言为任意类型添加方法
- 6.7 Go语言使用事件系统实现事件的响应和处理
- 6.8 Go语言类型内嵌和结构体内嵌
- 6.9 Go语言结构体内嵌模拟类的继承
- 6.10 Go语言初始化内嵌结构体
- 6.11 Go语言内嵌结构体成员名字冲突
- 6.12 Go语言使用匿名结构体解析JSON数据
- 6.13 Go语言垃圾回收和SetFinalizer
- 6.14 Go语言将结构体数据保存为JSON格式数据
- 6.15 Go语言链表操作
- 6.16 Go语言数据I/O对象及操作
- 7.Go语言接口
- 7.1 Go语言接口声明
- 7.2 Go语言实现接口的条件
- 7.3 Go语言类型与接口的关系
- 7.4 Go语言类型断言简述
- 7.5 Go语言实现日志系统
- 7.6 Go语言排序
- 7.7 Go语言接口的嵌套组合
- 7.8 Go语言接口和类型之间的转换
- 7.9 Go语言空接口类型
- 7.10 Go语言使用空接口实现可以保存任意值的字典
- 7.11 Go语言类型分支
- 7.12 Go语言error接口
- 7.13 Go语言接口内部实现
- 7.14 Go语言表达式求值器
- 7.15 Go语言实现Web服务器
- 7.16 Go语言音乐播放器
- 7.17 Go语言实现有限状态机(FSM)
- 7.18 Go语言二叉树数据结构的应用
- 8.Go语言包
- 8.1 Go语言包的基本概念
- 8.2 Go语言封装简介及实现细节
- 8.3 Go语言GOPATH详解
- 8.4 Go语言常用内置包简介
- 8.5 Go语言自定义包
- 8.6 Go语言package
- 8.7 Go语言导出包中的标识符
- 8.8 Go语言import导入包
- 8.9 Go语言工厂模式自动注册
- 8.10 Go语言单例模式简述
- 8.11 Go语言sync包与锁
- 8.12 Go语言big包
- 8.13 Go语言使用图像包制作GIF动画
- 8.14 Go语言正则表达式
- 8.15 Go语言time包
- 8.16 Go语言os包用法简述
- 8.17 Go语言flag包
- 8.18 Go语言go mod包依赖管理工具使用详解
- 8.19 Go语言生成二维码
- 8.20 Go语言Context(上下文)
- 8.21 客户信息管理系统
- 8.22 Go语言发送电子邮件
- 8.23 Go语言(Pingo)插件化开发
- 8.24 Go语言定时器实现原理及作用
- 9.Go语言并发
- Go语言并发简述(并发的优势)
- Go语言goroutine(轻量级线程)
- Go语言并发通信
- Go语言竞争状态简述
- Go语言GOMAXPROCS(调整并发的运行性能)
- 并发和并行的区别
- goroutine和coroutine的区别
- Go语言通道(chan)——goroutine之间通信的管道
- Go语言并发打印(借助通道实现)
- Go语言单向通道——通道中的单行道
- Go语言无缓冲的通道
- Go语言带缓冲的通道
- Go语言channel超时机制
- Go语言通道的多路复用——同时处理接收和发送多个通道的数据
- Go语言RPC(模拟远程过程调用)
- Go语言使用通道响应计时器的事件
- Go语言关闭通道后继续使用通道
- Go语言多核并行化
- Go语言Telnet回音服务器——TCP服务器的基本结构
- Go语言竞态检测——检测代码在并发环境下可能出现的问题
- Go语言互斥锁(sync.Mutex)和读写互斥锁(sync.RWMutex)
- Go语言等待组(sync.WaitGroup)
- Go语言死锁、活锁和饥饿概述
- Go语言封装qsort快速排序函数
- Go语言CSP:通信顺序进程简述
- Go语言聊天服务器
- 10.Go语言反射
- Go语言反射(reflection)简述
- Go语言反射规则浅析
- Go语言reflect.TypeOf()和reflect.Type(通过反射获取类型信息)
- Go语言reflect.Elem()——通过反射获取指针指向的元素类型
- Go语言通过反射获取结构体的成员类型
- Go语言结构体标签(Struct Tag)
- Go语言reflect.ValueOf()和reflect.Value(通过反射获取值信息)
- Go语言通过反射访问结构体成员的值
- Go语言IsNil()和IsValid()——判断反射值的空和有效性
- Go语言通过反射修改变量的值
- Go语言通过类型信息创建实例
- Go语言通过反射调用函数
- Go语言inject库:依赖注入
- 11.Go语言网络编程
- Go语言Socket编程详解
- Go语言Dial()函数:建立网络连接
- Go语言ICMP协议:向主机发送消息
- Go语言TCP协议
- Go语言DialTCP():网络通信
- Go语言HTTP客户端实现简述
- Go语言服务端处理HTTP、HTTPS请求
- Go语言RPC协议:远程过程调用
- 如何设计优雅的RPC接口
- Go语言解码未知结构的JSON数据
- Go语言如何搭建网站程序
- Go语言开发一个简单的相册网站
- Go语言数据库(Database)相关操作
- 示例:并发时钟服务器
- Go语言router请求路由
- Go语言middleware:Web中间件
- Go语言常见大型Web项目分层(MVC架构)
- Go语言Cookie的设置与读取
- Go语言获取IP地址和域名解析
- Go语言TCP网络程序设计
- Go语言UDP网络程序设计
- Go语言IP网络程序设计
- Go语言是如何使得Web工作的
- Go语言session的创建和管理
- Go语言Ratelimit服务流量限制
- Go语言WEB框架(Gin)详解
- 12.Go语言文件处理
- Go语言自定义数据文件
- Go语言JSON文件的读写操作
- Go语言XML文件的读写操作
- Go语言使用Gob传输数据
- Go语言纯文本文件的读写操作
- Go语言二进制文件的读写操作
- Go语言自定义二进制文件的读写操作
- Go语言zip归档文件的读写操作
- Go语言tar归档文件的读写操作
- Go语言使用buffer读取文件
- Go语言并发目录遍历
- Go语言从INI配置文件中读取需要的值
- Go语言文件的写入、追加、读取、复制操作
- Go语言文件锁操作
- 13.Go语言网络爬虫
- Go语言网络爬虫概述
- Go语言网络爬虫中的基本数据结构
- Go语言网络爬虫的接口设计
- Go语言网络爬虫缓冲器工具的实现
- Go语言网络爬虫缓冲池工具的实现
- Go语言网络爬虫多重读取器的实现
- Go语言网络爬虫内部基础接口
- Go语言网络爬虫组件注册器
- Go语言网络爬虫下载器接口
- Go语言网络爬虫分析器接口
- Go语言网络爬虫条目处理管道
- Go语言网络爬虫调度器的实现
- Go语言爬取图片小程序
- 14.Go语言编译和工具链
- go build命令(go语言编译命令)完全攻略
- go clean命令——清除编译文件
- go run命令——编译并运行
- go fmt命令——格式化代码文件
- go install命令——编译并安装
- go get命令——一键获取代码、编译并安装
- go generate命令——在编译前自动化生成某类代码
- go test命令(Go语言测试命令)完全攻略
- go pprof命令(Go语言性能分析命令)完全攻略
- 15.Go语言避坑与技巧
- goroutine(Go语言并发)如何使用才更加高效?
- Go语言反射——性能和灵活性的双刃剑
- Go语言接口的nil判断
- Go语言map的多键索引——多个数值条件可以同时查询
- Go语言与C/C++进行交互
- Go语言文件读写
- Json数据编码和解码
- Go语言使用select切换协程
- Go语言加密通信
- Go语言内存管理简述
- Go语言垃圾回收
- Go语言哈希函数
- Go语言分布式id生成器
- 部署Go语言程序到Linux服务器
- Go语言实现RSA和AES加解密
