https://www.cnblogs.com/newjiang/p/9541223.html
页面缓存——内存与文件的那些事儿
提到文件,操作系统必须解决两个重要的问题。首先是硬盘驱动器的存取速度缓慢得令人头疼(相对于内存而言),尤其是磁盘的寻道性能。第二个是要满足‘一次性加载文件内容到物理内存并在程序间共享’的需求。如果你使用进程浏览器翻看Windows进程,就会发现大约15MB的共享DLL被加载进了每一个进程。我目前的Windows系统就运行了100个进程,如果没有共享机制,那将消耗大约1.5GB的物理内存仅仅用于存放公用DLL。这可不怎么好。同样的,几乎所有的Linux程序都需要ld.so和libc,以及其它的公用函数库。
令人愉快的是,这两个问题可以被一石二鸟的解决:页面缓存(page cache),内核用它保存与页面同等大小的文件数据块。为了展示页面缓存,我需要祭出一个名叫render的Linux程序,它会打开一个scene.dat文件,每次读取其中的512字节,并将这些内容保存到一个建立在堆上的内存块中。首次的读取是这样的:
这里写图片描述
在读取了12KB以后,render的堆以及相关的页帧情况如下:
这里写图片描述
这看起来很简单,但还有很多事情会发生。首先,即使这个程序只调用了常规的read函数,此时也会有三个 4KB的页帧存储在页面缓存当中,它们持有scene.dat的一部分数据。尽管有时这令人惊讶,但的确所有的常规文件I/O都是通过页面缓存来进行的。在x86 Linux里,内核将文件看作是4KB大小的数据块的序列。即使你只从文件读取一个字节,包含此字节的整个4KB数据块都会被读取,并放入到页面缓存当中。这样做是有道理的,因为磁盘的持续性数据吞吐量很不错,而且一般说来,程序对于文件中某区域的读取都不止几个字节。页面缓存知道每一个4KB数据块在文件中的对应位置,如上图所示的#0, #1等等。与Linux的页面缓存类似,Windows使用256KB的views。
不幸的是,在一个普通的文件读取操作中,内核必须复制页面缓存的内容到一个用户缓冲区中,这不仅消耗CPU时间,伤害了CPU cache的性能,还因为存储了重复信息而浪费物理内存。如上面每张图所示,scene.dat的内容被保存了两遍,而且程序的每个实例都会保存一份。至此,我们缓和了磁盘延迟的问题,但却在其余的每个问题上惨败。内存映射文件(memory-mapped files)将引领我们走出混乱:
这里写图片描述
当你使用文件映射的时候,内核将你的程序的虚拟内存页直接映射到页面缓存上。这将导致一个显著的性能提升:《Windows系统编程》指出常规的文件读取操作运行时性能改善30%以上;《Unix环境高级编程》指出类似的情况也发生在Linux和Solaris系统上。你还可能因此而节省下大量的物理内存,这依赖于你的程序的具体情况。
和以前一样,提到性能,实际测量才是王道,但是内存映射的确值得被程序员们放入工具箱。相关的API也很漂亮,它提供了像访问内存中的字节一样的方式来访问一个文件,不需要你多操心,也不牺牲代码的可读性。回忆一下地址空间、还有那个在Unix类系统上关于mmap的实验,Windows下的CreateFileMapping及其在高级语言中的各种可用封装。当你映射一个文件时,它的内容并不是立刻就被全部放入内存的,而是依赖页故障(page fault)按需读取。在获取了一个包含所需的文件数据的页帧后,对应的故障处理函数会将你的虚拟内存页映射到页面缓存上。如果所需内容不在缓存当中,此过程还将包含磁盘I/O操作。
现在给你出一个流行的测试题。想象一下,在最后一个render程序的实例退出之时,那些保存了scene.dat的页面缓存会被立刻清理吗?人们通常会这样认为,但这是个坏主意。如果你仔细想想,我们经常会在一个程序中创建一个文件,退出,紧接着在第二个程序中使用这个文件。页面缓存必须能处理此类情况。如果你再多想想,内核何必总是要舍弃页面缓存中的内容呢?记住,磁盘比RAM慢5个数量级,因此一个页面缓存的命中(hit)就意味着巨大的胜利。只要还有足够的空闲物理内存,缓存就应该尽可能保持满状态。所以它与特定的进程并不相关,而是一个系统级的资源。如果你一周前运行过render,而此时scene.dat还在缓存当中,那真令人高兴。这就是为什么内核缓存的大小会稳步增加,直到缓存上限。这并非因为操作系统是破烂货,吞噬你的RAM,事实上这是种好的行为,反而释放物理内存才是一种浪费。缓存要利用得越充分越好。
由于使用了页面缓存体系结构,当一个程序调用write()时,相关的字节被简单的复制到页面缓存中,并且将页面标记为脏的(dirty)。磁盘I/O一般不会立刻发生,因此你的程序的执行不会被打断去等待磁盘设备。这样做的缺点是,如果此时计算机死机,那么你写入的数据将不会被记录下来。因此重要的文件,比如数据库事务记录必须被fsync() (但是还要小心磁盘控制器的缓存)。另一方面,读取操作一般会打断你的程序直到准备好所需的数据。内核通常采用积极加载(eager loading)的方式来缓解这个问题。以提前读取(read ahead)为例,内核会预先加载一些页到页面缓存,并期待你的读取操作。通过提示系统即将对文件进行的是顺序还是随机读取操作(参看madvise(), readahead(), Windows缓存提示),你可以帮助内核调整它的积极加载行为。Linux的确会对内存映射文件进行预取,但我不太确定Windows是否也如此。最后需要一提的是,你还可以通过在Linux中使用O_DIRECT或在Windows中使用NO_BUFFERING来绕过页面缓存,有些数据库软件就是这么做的。
一个文件映射可以是私有的(private)或共享的(shared)。这里的区别只有在更改(update)内存中的内容时才会显现出来:在私有映射中,更改并不会被提交到磁盘或对其他进程可见,而这在共享的映射中就会发生。内核使用写时拷贝(copy on write)技术,通过页表项(page table entries),实现私有映射。在下面的例子中,render和另一个叫render3d的程序(我是不是很有创意?)同时私有映射了scene.dat。随后render改写了映射到此文件的虚拟内存区域:
这里写图片描述
上图所示的只读的页表项并不意味着映射是只读的,它们只是内核耍的小把戏,用于共享物理内存直到可能的最后一刻。你会发现‘私有’一词是多么的不恰当,你只需记住它只在数据发生更改时起作用。此设计所带来的一个结果就是,一个以私有方式映射文件的虚拟内存页可以观察到其他进程对此文件的改动,只要之前对这个内存页进行的都是读取操作。一旦发生过写时拷贝,就不会再观察到其他进程对此文件的改动了。此行为不是内核提供的,而是在x86系统上就会如此。另外,从API的角度来说,这也是合理的。与此相反,共享映射只是简单的映射到页面缓存,仅此而已。对页面的所有更改操作对其他进程都可见,而且最终会执行磁盘操作。最后,如果此共享映射是只读的,那么页故障将触发段错误(segmentation fault)而不是写时拷贝。
被动态加载的函数库通过文件映射机制放入到你的程序的地址空间中。这里没有任何特别之处,同样是采用私有文件映射,跟提供给你调用的常规API别无二致。下面的例子展示了两个运行中的render程序的一部分地址空间,还有物理内存。它将我们之前看到的概念都联系在了一起。
- 程序优化
- vtune
- linux性能监控软件Perf
- 系统级性能分析工具perf的介绍与使用
- perf的二级命令
- 全局性概况
- 全局细节
- 最常用功能perf record
- 可视化工具perf timechart
- perf引入的overhead
- perf stat
- gprof
- 三种Linux性能分析工具的比较
- perf+gprof+gprof2dot+graphviz进行性能分析热点
- 英特尔多核平台编程优化大赛报告
- 内存操作
- mmap
- mmap的分类
- 深入理解内存映射mmap
- 计算机底层知识拾遗(九)深入理解内存映射mmap
- 内核驱动mmap Handler利用技术(一)
- Windows内存管理机制及C++内存分配实例
- Linux内存管理初探
- Windows CPU信息查看
- Linux CPU信息查看
- 预留大内存
- Linux下试验大页面映射
- /dev/mem
- Linux中通过/dev/mem操控物理地址
- /dev/mem分析
- 用法举例
- Linux下直接读写物理地址内存
- 查看内存信息
- Cache Memory
- 页面缓存
- 查看各级cache信息的方法
- dmidecode命令查看cache size
- CPU Cache 机制以及 Cache miss
- ARM体系关闭mmu和cache
- CR0-4寄存器介绍
- 查看CR0,CR2,CR3的值
- Linux 下如何禁用CPU cache
- 7个示例科普CPU Cache
- 第一个例子的C代码
- 其中之一
- Linux 从虚拟地址到物理地址
- 内存测试例子
- 每个程序员都应该了解的内存
- Part 1
- 程序员能够做什么
- 3 CPU caches
- 6 What Programmers Can Do
- VirtualAlloc
- Large-Page Support
- Some remarks on VirtualAlloc and MEM_LARGE_PAGES
- DMA
- MOV和MOVS的效率问题?如何高效的拷贝内存 中的数据
- how to use movntdqa to avoid cache pollution
- 计算机底层知识拾遗(一)理解虚拟内存机制
- How to access the control registers cr0,cr2,cr3 from a program
- 细说Cache-L1/L2/L3/TLB
- what-is-the-meaning-of-non-temporal-memory-accesses-in-x86
- How can the L1, L2, L3 CPU caches be turned off on modern x86/amd64 chips?
- UA list
- GDB
- 程序运行参数
- Linux下GDB的多线程调试
- CMake
- CMake快速入门教程:实战
- cmake打印变量值
- function
- source_group
- cmake_parse_arguments
- 编译.S文件
- add_definitions
- CMake添加-g编译选项
- Debug模式下启动
- Mysql
- Mysql联合查询union和union all的使用介绍
- MySQL数据库导入错误:ERROR 1064 (42000) 和 ERROR at line xx: Unknown command '\Z'.
- 解决MYSQL数据库 Table ‘xxx’ is marked as crashed and should be repaired 145错误
- C/C++
- c语言中static的作用
- strlen和sizeof有什么区别?
- printf
- Libuv中文文档之线程
- RapidJSON
- gcc/g++ 实战之编译的四个过程
- __thread
- TARGET_LINK_LIBRARIES
- MAP_HUGETLB
- 使用Intel格式的汇编
- __m128i
- emmintrin.h
- _mm_stream_si128
- _mm_stream_load_si128
- _mm_load_si128
- _mm_xor_si128
- _mm_store_si128
- _mm_cvtsi128_si64
- Intel SSE指令集
- _mm_set_epi64x
- _mm_aesenc_si128
- _umul128
- _mm_malloc
- reinterpret_cast
- strlen
- 读取UTF-8的txt文件发现开头的多三个字节的问题
- PHP
- php计算函数执行时间的方法
- 框架
- Json Rpc远程调用框架
- PHP多进程
- PHP CLI模式下的多进程应用
- php多进程总结
- 优化
- PHP7 优化
- 让你的PHP7更快(GCC PGO)
- PHP的性能演进(从PHP5.0到PHP7.1的性能全评测)
- PHP字符串全排列算法
- 获取服务器基本信息
- cookie
- phpstudy2018 安装xdebug扩展
- 软件下载
- PHP mysqli_error() 函数
- PHP Session 变量
- curl
- curl_getinfo
- 获取请求头
- PHP使用CURL获取302跳转后的地址实例
- PHP基于cURL实现自动模拟登录
- PHP获取远程图片大小(CURL实现)
- CURL模拟登录
- curl模拟登录提交(从目录中获取文件)
- CURL HTTPS
- curl帮v
- rename
- copy
- JSON
- json_encode
- json_decode
- json_last_error_msg
- json_last_error
- PHP json_encode中文乱码解决方法
- var_dump
- PHPStorm与Xdebug设置
- Xdebug原理以notepad为例
- str_pad
- pack
- PHP二进制与字符串之间的相互转换
- PHP执行系统命令(简介及方法)
- 函数
- 十进制转二进制
- 字符串到ASSCI
- 字符串转二进制
- 合并两个表
- 图像识别
- Tesseract
- 虚拟机
- vmware下Kali 2.0安装VMware Tools
- 安装 VMware tools出现“正在进行简易安装时,无法手动启动VMware tools安装”
- 爬虫
- 有哪些好的数据来源或者大数据平台?
- Cygwin
- Git 常用命令
- 排列组合
- 含重复元素序列的全排列
- 全排列的非递归和递归实现(含重复元素)
- GitBook
- 编辑环境
- visual studio code
- 2名数学家或发现史上最快超大乘法运算法,欲破解困扰人类近半个世纪的问题
- 系统预定义常量
- 指令集
- SSE
- _MSC_VER
- msys2
- 安装cmake
- MSYS2 更新源
- 讲Cmake msys32使用问题解答 CXX CMAKE_C_COMPILER配置详解
- VirtualBox
- 解决virtualbox只能安装32位系统的问题
- Ubuntu
- 使用AES-NI的编译参数
- debian下安装内核源码的方法
- tar.xz结尾的文件的解压方法
- Linux命令
- insmod
- fatal error: openssl/bio.h
- 准备module的编译环境(kali)
- Ubuntu/Debian 之内核模块开发准备
- dmesg的详细用法
- Linux系统开机自动加载驱动module
- linux /Module 浅析(转载)
- Kali
- 找回gpedit
- Enable the Lock Pages in Memory Option (Windows)
- TLA
- 双系统
- 显卡
- 显示no CUDA的解决过程
