## 题目描述 输入n个整数,输出其中最小的k个。 ## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#分析与解法)分析与解法 ### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法一)解法一 要求一个序列中最小的k个数,按照惯有的思维方式,则是先对这个序列从小到大排序,然后输出前面的最小的k个数。 至于选取什么的排序方法,我想你可能会第一时间想到快速排序(我们知道,快速排序平均所费时间为`n*logn`),然后再遍历序列中前k个元素输出即可。因此,总的时间复杂度:`O(n * log n)+O(k)=O(n * log n)`。 ### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法二)解法二 咱们再进一步想想,题目没有要求最小的k个数有序,也没要求最后n-k个数有序。既然如此,就没有必要对所有元素进行排序。这时,咱们想到了用选择或交换排序,即: 1、遍历n个数,把最先遍历到的k个数存入到大小为k的数组中,假设它们即是最小的k个数; 2、对这k个数,利用选择或交换排序找到这k个元素中的最大值kmax(找最大值需要遍历这k个数,时间复杂度为`O(k)`); 3、继续遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与kmax比较:如果`x = kmax`,则继续遍历不更新数组。 每次遍历,更新或不更新数组的所用的时间为`O(k)`或`O(0)`。故整趟下来,时间复杂度为`n*O(k)=O(n*k)`。 ### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法三)解法三 更好的办法是维护容量为k的最大堆,原理跟解法二的方法相似: * 1、用容量为k的最大堆存储最先遍历到的k个数,同样假设它们即是最小的k个数; * 2、堆中元素是有序的,令k1<k2<...<kmax(kmax设为最大堆中的最大元素) * 3、遍历剩余n-k个数。假设每一次遍历到的新的元素的值为x,把x与堆顶元素kmax比较:如果`x < kmax`,用x替换kmax,然后更新堆(用时logk);否则不更新堆。 这样下来,总的时间复杂度:`O(k+(n-k)*logk)=O(n*logk)`。此方法得益于堆中进行查找和更新的时间复杂度均为:`O(logk)`(若使用解法二:在数组中找出最大元素,时间复杂度:`O(k))`。 ### [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#解法四)解法四 在《数据结构与算法分析--c语言描述》一书,第7章第7.7.6节中,阐述了一种在平均情况下,时间复杂度为`O(N)`的快速选择算法。如下述文字: * 选取S中一个元素作为枢纽元v,将集合S-{v}分割成S1和S2,就像快速排序那样 * 如果k <= |S1|,那么第k个最小元素必然在S1中。在这种情况下,返回QuickSelect(S1, k)。 * 如果k = 1 + |S1|,那么枢纽元素就是第k个最小元素,即找到,直接返回它。 * 否则,这第k个最小元素就在S2中,即S2中的第(k - |S1| - 1)个最小元素,我们递归调用并返回QuickSelect(S2, k - |S1| - 1)。 此算法的平均运行时间为O(n)。 示例代码如下: ~~~ //QuickSelect 将第k小的元素放在 a[k-1] void QuickSelect( int a[], int k, int left, int right ) { int i, j; int pivot; if( left + cutoff <= right ) { pivot = median3( a, left, right ); //取三数中值作为枢纽元,可以很大程度上避免最坏情况 i = left; j = right - 1; for( ; ; ) { while( a[ ++i ] < pivot ){ } while( a[ --j ] > pivot ){ } if( i < j ) swap( &a[ i ], &a[ j ] ); else break; } //重置枢纽元 swap( &a[ i ], &a[ right - 1 ] ); if( k <= i ) QuickSelect( a, k, left, i - 1 ); else if( k > i + 1 ) QuickSelect( a, k, i + 1, right ); } else InsertSort( a + left, right - left + 1 ); } ~~~ 这个快速选择SELECT算法,类似快速排序的划分方法。N个数存储在数组S中,再从数组中选取“中位数的中位数”作为枢纽元X,把数组划分为Sa和Sb俩部分,Sa<=X<=Sb,如果要查找的k个元素小于Sa的元素个数,则返回Sa中较小的k个元素,否则返回Sa中所有元素+Sb中小的k-|Sa|个元素,这种解法在平均情况下能做到`O(n)`的复杂度。 更进一步,《算法导论》第9章第9.3节介绍了一个最坏情况下亦为O(n)时间的SELECT算法,有兴趣的读者可以参看。 ## [](https://github.com/julycoding/The-Art-Of-Programming-By-July/blob/master/ebook/zh/02.01.md#举一反三)举一反三 1、谷歌面试题:输入是两个整数数组,他们任意两个数的和又可以组成一个数组,求这个和中前k个数怎么做? 分析: ~~~ “假设两个整数数组为A和B,各有N个元素,任意两个数的和组成的数组C有N^2个元素。 那么可以把这些和看成N个有序数列: A[1]+B[1] <= A[1]+B[2] <= A[1]+B[3] <=… A[2]+B[1] <= A[2]+B[2] <= A[2]+B[3] <=… … A[N]+B[1] <= A[N]+B[2] <= A[N]+B[3] <=… 问题转变成,在这N^2个有序数列里,找到前k小的元素” ~~~ 2、有两个序列A和B,A=(a1,a2,...,ak),B=(b1,b2,...,bk),A和B都按升序排列。对于1<=i,j<=k,求k个最小的(ai+bj)。要求算法尽量高效。 3、给定一个数列a1,a2,a3,...,an和m个三元组表示的查询,对于每个查询(i,j,k),输出ai,ai+1,...,aj的升序排列中第k个数。