在[前面一文]中,我们构造了一个非常简单的数据结构,这个数据结构也是整个区块链数据库的核心。目前所完成的区块链原型,已经可以通过链式关系把区块相互关联起来:每个块都被连接到前一个块。
但是,我们实现的区块链有一个巨大的缺点:向链中加入区块太容易和廉价了。而区块链和比特币的其中一个核心就是,要想加入新的区块,必须先完成一些非常困难的工作。在本文,我们将会解决这个缺点。
## 工作量证明
区块链的一个关键点就是,一个人必须经过一系列困难的工作,才能将数据放入到区块链中。正是这种困难的工作,才使得区块链是安全和一致的。此外,完成这个工作的人也会获得奖励(这也就是通过挖矿获得币)。
这个机制与生活的一个现象非常类似:一个人必须通过努力工作,才能够获得回报或者奖励,用以支撑他们的生活。在区块链中,是通过网络中的参与者(矿工)不断的工作来支撑整个网络,也就是矿工不断地向区块链中加入新块,然后获得相应的奖励。作为他们努力工作的结果,新生成的区块就能够被安全地被加入到区块链中,这种机制维护了整个区块链数据库的稳定性。值得注意的是,完成了这个工作的人必须要证明这一点,他必须要证明确实是他完成了这些工作。
整个 “努力工作并进行证明” 的机制,就叫做工作量证明(proof-of-work)。要想完成工作非常地不容易,因为这需要大量的计算能力:即便是高性能计算机,也无法在短时间内快速完成。此外,这个工作的困难度会随着时间不断增长,以保持每个小时大概出 6 个新块的速度。在比特币中,这个工作的目的是为了找到一个块的哈希,同时这个哈希满足了一些必要条件。这个哈希,也就充当了证明的角色。
因此,**寻求证明(寻找有效哈希)**,就是实际要做的事情。
## 哈希计算
在本节中,我们会讨论哈希计算。如果你已经熟悉了这个概念,可以跳过这一节。
获得指定数据的一个哈希值的过程,就叫做哈希计算。一个哈希,就是对所计算数据的一个唯一的表示。一个哈希函数输入任意大小的数据,输出一个固定大小的哈希值。下面是哈希的几个关键特性:
1. 无法从一个哈希值恢复原始数据。也就是说,哈希并不是加密。
2. 对于特定的数据,只能有一个哈希,并且这个哈希是唯一的。
3. 即使是仅仅改变输入数据中的一个字节,也会导致输出一个完全不同的哈希。

\-哈希过程-
哈希函数被广泛用于检测数据的一致性。一些软件提供者除了提供软件包以外,还会发布校验和。当下载完一个文件以后,你可以用哈希函数对下载好的文件计算一个哈希,并与作者提供的哈希进行比较,以此来保证文件下载的完整性。
在区块链中,哈希被用于保证一个块的一致性。哈希算法的输入数据包含了前一个块的哈希,因此使得不太可能(或者,至少很困难)去修改链中的一个块:因为如果一个人想要修改前面一个块的哈希,那么他必须要重新计算这个块以及后面所有块的哈希。
Hashcash
比特币使用[Hashcash],一个最初用来防止垃圾邮件的工作量证明算法。它可以被分解为以下步骤:
1. 取一些公开的数据(比如,如果是 email 的话,它可以是接收者的邮件地址;在比特币中,它是区块头)
2. 给这个公开数据添加一个计数器。计数器默认从 0 开始
3. 将 data(数据) 和 counter(计数器) 组合到一起,获得一个哈希
4. 检查哈希是否符合一定的条件: 1.如果符合条件,结束 2.如果不符合,增加计数器,重复步骤 3-4
因此,这是一个暴力算法:改变计数器,计算一个新的哈希,检查,增加计数器,计算一个哈希,检查,如此反复。这也是为什么说它是在计算上是非常昂贵的,因为这一步需要如此反复不断地计算和检查。
现在,让我们来仔细看一下一个哈希要满足的必要条件。在原始的 Hashcash 实现中,它的要求是 “一个哈希的前 20 位必须是 0”。在比特币中,这个要求会随着时间而不断变化。因为按照设计,必须保证每 10 分钟生成一个块,而不论计算能力会随着时间增长,或者是会有越来越多的矿工进入网络,所以需要动态调整这个必要条件。
为了阐释这一算法,我从前一个例子(“I like donuts”)中取得数据,并且找到了一个前 3 个字节是全是 0 的哈希。

\-一个以三个0开头的哈希值-
**ca07ca**是计数器的 16 进制值,十进制的话是 13240266.
## 实现
好了,完成了理论层面,来开始写代码吧!首先,定义挖矿的难度值:
~~~
const targetBits = 24
~~~
在比特币中,当一个块被挖出来以后,“target bits” 代表了区块头里存储的难度。这里的 24 指的是算出来的哈希前 24 位必须是 0,用 16 进制表示化的话,就是前 6 位必须是 0,这一点可以在最后的输出可以看出来。目前不会实现一个动态调整目标的算法,所以将难度定义为一个全局的常量即可。
24 其实是一个可以任意取的数字,目的是要有一个目标(target)而已,这个目标占据不到 256 位的内存空间。同时,我们想要有足够的差异性,但是又不至于大的过分,因为差异性越大,就越难找到一个合适的哈希。
~~~
type ProofOfWork struct {
block *Block
target *big.Int
}
func NewProofOfWork(b *Block) *ProofOfWork {
target := big.NewInt(1)
target.Lsh(target, uint(256-targetBits))
pow := &ProofOfWork{b, target}
return pow
}
~~~
这里,我们构造了**ProofOfWork**结构,里面存储了指向一个块和一个目标的指针。“目标” ,也就是前一节中所描述的必要条件。这里使用了一个[大](https://golang.org/pkg/math/big/)整数,我们将哈希与目标进行比较:先把一个哈希转换成一个大整数,然后检测它是否小于目标。
在\*\* NewProofOfWork\*\* 函数中,我们将\*\* big.Int\*\* 初始化为 1,然后左移`256 - targetBits`位。**256**是一个 SHA-256 哈希的位数,我们将要使用的是 SHA-256 哈希算法。**target**(目标) 的 16 进制形式为:
~~~
0x10000000000000000000000000000000000000000000000000000000000
~~~
它在内存上占据了 29 个字节。下面是与前面例子哈希的形式化比较:
~~~
0fac49161af82ed938add1d8725835cc123a1a87b1b196488360e58d4bfb51e3
0000010000000000000000000000000000000000000000000000000000000000
0000008b0f41ec78bab747864db66bcb9fb89920ee75f43fdaaeb5544f7f76ca
~~~
第一个哈希(基于 “I like donuts” 计算)比目标要大,因此它并不是一个有效的工作量证明。第二个哈希(基于 “I like donutsca07ca” 计算)比目标要小,所以是一个有效的证明。
译者注:评论有人提出上面的形式化比较有些“言不符实”,其实它应该并非由 “I like donuts” 而来,但是原文作者表达的意思是没问题的,可能是疏忽而已。下面是我做的一个小实验:
~~~
package main
import (
"crypto/sha256"
"fmt"
"math/big"
)
func main() {
data1 := []byte("I like donuts")
data2 := []byte("I like donutsca07ca")
targetBits := 24
target := big.NewInt(1)
target.Lsh(target, uint(256-targetBits))
fmt.Printf("%x\n", sha256.Sum256(data1))
fmt.Printf("%64x\n", target)
fmt.Printf("%x\n", sha256.Sum256(data2))
}
~~~
输出:

\-实验-
你可以把目标想象为一个范围的上界:如果一个数(由哈希转换而来)比上界要小,那么这是有效的,反之无效。因为要求比上界要小,所以会导致更少的有效数字。因此,也就需要通过困难的工作(一系列反复的计算),才能找到一个有效的数字。
现在,我们需要有数据来进行哈希,准备数据:
~~~
func (pow *ProofOfWork) prepareData(nonce int) []byte {
data := bytes.Join(
[][]byte{
pow.block.PrevBlockHash,
pow.block.Data,
IntToHex(pow.block.Timestamp),
IntToHex(int64(targetBits)),
IntToHex(int64(nonce)),
},
[]byte{},
)
return data
}
//将int转化为16进制的字节
func IntToHex(num int64) []byte {
h := fmt.Sprintf("%x",num)
return []byte(h)
}
~~~
这个部分比较直观:只需要将 target ,nonce 与 Block 进行合并。这里的**nonce**,就是上面 Hashcash 所提到的计数器,它是一个密码学术语。
很好,到这里,所有的准备工作就完成了,下面来实现 PoW 算法的核心:
~~~
func (pow *ProofOfWork) Run() (int, []byte) {
var hashInt big.Int
var hash [32]byte
nonce := 0
fmt.Printf("Mining the block containing \"%s\"\n", pow.block.Data)
maxNonce := math.MaxInt64
for nonce < maxNonce {
data := pow.prepareData(nonce)
hash = sha256.Sum256(data)
hashInt.SetBytes(hash[:])
if hashInt.Cmp(pow.target) == -1 {
fmt.Printf("\r%x", hash)
break
} else {
nonce++
}
}
fmt.Print("\n\n")
return nonce, hash[:]
}
~~~
首先我们对变量进行初始化:
* HashInt 是 hash 的整形表示;
* nonce 是计数器。
然后开始一个 “无限” 循环:**maxNonce**对这个循环进行了限制, 它等于**math.MaxInt64**。这是为了避免**nonce**可能出现的溢出。尽管我们的 PoW 实现的难度太小了,以至于计数器其实不太可能会溢出,但最好还是以防万一检查一下。
在这个循环中,我们做的事情有:
1. 准备数据
2. 用 SHA-256 对数据进行哈希
3. 将哈希转换成一个大整数
4. 将这个大整数与目标进行比较
跟之前所讲的一样简单。现在我们可以移除**Block**的**SetHash**方法,然后修改**NewBlock**函数:
~~~
func NewBlock(data string, prevBlockHash []byte) *Block {
block := &Block{time.Now().Unix(), []byte(data), prevBlockHash, []byte{}, 0}
pow := NewProofOfWork(block)
nonce, hash := pow.Run()
block.Hash = hash[:]
block.Nonce = nonce
return block
}
~~~
在这里,你可以看到**nonce**被保存为**Block**的一个属性。这是十分有必要的,因为待会儿我们需要用**nonce**来对这个工作量进行证明。**Block**结构现在看起来像是这样:
~~~
type Block struct {
Timestamp int64
Data []byte
PrevBlockHash []byte
Hash []byte
Nonce int
}
~~~
好了!现在让我们来运行一下是否正常工作:
~~~
Mining the block containing "Genesis Block"
00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Mining the block containing "Send 1 BTC to Ivan"
00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Mining the block containing "Send 2 more BTC to Ivan"
000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe
Prev. hash:
Data: Genesis Block
Hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Prev. hash: 00000041662c5fc2883535dc19ba8a33ac993b535da9899e593ff98e1eda56a1
Data: Send 1 BTC to Ivan
Hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Prev. hash: 00000077a856e697c69833d9effb6bdad54c730a98d674f73c0b30020cc82804
Data: Send 2 more BTC to Ivan
Hash: 000000b33185e927c9a989cc7d5aaaed739c56dad9fd9361dea558b9bfaf5fbe
~~~
成功了!你可以看到每个哈希都是 **3 个字节的 0 开始**,并且获得这些哈希需要花费一些时间。
还剩下一件事情需要做,对工作量证明进行验证:
~~~
func (pow *ProofOfWork) Validate() bool {
var hashInt big.Int
data := pow.prepareData(pow.block.Nonce)
hash := sha256.Sum256(data)
hashInt.SetBytes(hash[:])
isValid := hashInt.Cmp(pow.target) == -1
return isValid
}
~~~
这里,就是我们就用到了上面保存的 nonce。
再来检测一次是否正常工作:
~~~
func main() {
...
for _, block := range bc.Blocks {
...
pow := NewProofOfWork(block)
fmt.Printf("PoW: %s\n", strconv.FormatBool(pow.Validate()))
fmt.Println()
}
}
~~~
输出:
~~~
...
Prev. hash:
Data: Genesis Block
Hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038
PoW: true
Prev. hash: 00000093253acb814afb942e652a84a8f245069a67b5eaa709df8ac612075038
Data: Send 1 BTC to Ivan
Hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b
PoW: true
Prev. hash: 0000003eeb3743ee42020e4a15262fd110a72823d804ce8e49643b5fd9d1062b
Data: Send 2 more BTC to Ivan
Hash: 000000e42afddf57a3daa11b43b2e0923f23e894f96d1f24bfd9b8d2d494c57a
PoW: true
~~~
从下图可以看出,这次我们产生三个块花费了一分多钟,比没有工作量证明之前慢了很多(也就是成本高了很多):

\-输出-
## 总结
我们的区块链离真正的区块链又进了一步:现在需要经过一些困难的工作才能加入新的块,因此挖矿就有可能了。但是,它还缺少一些至关重要的特性:区块链数据库并不是持久化的,没有钱包,地址,交易,也没有共识机制。不过,所有的这些,我们都会在接下来的文章中实现,现在,愉快地挖矿吧!
* * *
链接:
\-[Full source codes](https://link.jianshu.com/?t=https://github.com/Jeiwan/blockchain_go/tree/part_2)
\-[Blockchain hashing algorithm](https://link.jianshu.com/?t=https://en.bitcoin.it/wiki/Block_hashing_algorithm)
\-[Proof of work](https://link.jianshu.com/?t=https://en.bitcoin.it/wiki/Proof_of_work)
\-[Hashcash](https://link.jianshu.com/?t=https://en.bitcoin.it/wiki/Hashcash)
本文源代码:[part\_2](https://link.jianshu.com/?t=https://github.com/Jeiwan/blockchain_go/tree/part_2)
* * *
**原文链接:**[https://jeiwan.cc/posts/building-blockchain-in-go-part-2/](https://jeiwan.cc/posts/building-blockchain-in-go-part-2/)
**作者:**GOLANG BLOCKCHAIN BITCOIN
**翻译:**liuchengxu
- go入门
- go基础
- go语言介绍
- go语言主要特性
- Golang内置类型和函数
- init函数和main函数
- 下划线
- iota
- 字符串
- 数据类型:数组与切片
- 数据类型:byte、rune与字符串
- 变量的5种创建方式
- 数据类型:字典
- 指针
- 数据类型:指针
- 类型断言
- 流程控制:defer延迟执行
- defer陷进
- 异常机制:panic和recover
- go函数
- go方法
- go依赖管理
- 轻松搞懂goroot与gopath区别
- 使用go module导入本地包的方法教程详解
- 读取用户的输入
- 文件读写
- 文件拷贝
- 从命令行读取参数
- JSON 数据格式
- 4 种常见JSON 格式数据解码
- XML 数据格式
- 用 Gob 传输数据
- Go 中的密码学
- 学习资料建议
- 深入结构体
- 测试
- 单元测试
- 常用标准库
- fmt
- time
- flag
- log
- IO操作
- 文件读取
- strconv
- template
- http
- context
- json
- 从文件中反序列化json对象
- xml
- go proxy 设置
- 面向对象
- 结构体
- struct能不能比较
- 接口
- make和new的区别
- go进阶
- Slice底层实现
- 闭包与递归
- 空接口
- 反射
- 接口中的“坑”
- 反射三定律
- 结构体里的tag
- 并发编程
- 初识Go 协程:goroutine
- go协程:管道
- 任务和master-锁实现和通道实现
- 惰性生成器的实现
- runtime包
- Goroutine池
- 定时器
- 并发安全和锁
- Sync
- 原子操作(atomic包)
- GMP 原理与调度
- 爬虫案例
- 邮件发送
- Godoc 安装与使用
- test
- 如何测试
- 基准测试
- 数组与切片
- 结构体,方法和接口
- Map实现原理
- 自定义error
- 网络编程
- socket编程
- 互联网协议
- tcp 服务器
- tcp编程
- UDP编程
- TCP黏包
- http编程
- websocket编程
- 设计模式
- 设置模式6大原则
- 创建型模式
- 简单工厂模式
- 工厂方法模式
- 抽象工厂模式
- 创建者模式
- 原型模式
- 单例模式
- 结构性模式
- 外观模式
- 适配器模式
- 代理模式
- 组合模式
- 享元模式
- 装饰模式
- 桥模式
- 行为型模式
- 中介者模式
- 观察者模式
- 命令模式
- 迭代器模式
- 模板方法模式
- 策略模式
- 状态模式
- 备忘录模式
- 解释器模式
- 职责链模式
- 访问者
- rpc
- Golang内存分配逃逸分析
- 面试题汇总
- 信号量的原理与使用
- 如何让在强制转换类型时不发生内存拷贝
- Go 如何利用 Linux 内核的负载均衡能力
- 性能优化:Go Ballast 让内存控制更加丝滑
- unsafe包详解
- go实战
- Go语言中编码规范
- json如何转为struct对象
- cobra
- 通过go mod模式创建cobra项目
- gorm
- gocache
- zap日志库
- echart
- web技术
- niugo
- context回调实现原理
- 认证与授权
- oauth2.0的4种实现方式
- IRIS
- 安装
- 入门
- 自定义http错误
- 基本HTTP API
- 中间件
- session
- websocket
- mvc
- cookie使用
- Casbin
- CORS跨域资源共享
- csrf防御
- jwt
- 限制HTTP请求次数的中间件Tollbooth
- 文件服务
- 基础使用
- 文件下载
- hero依赖注入与结构体转化
- hero基础
- 网络教程
- gin
- viper
- 在 5 分钟之内部署一个 Go 应用(Supervisor )
- go如何正常go get导入包
- 杂项
- 开源许可证
- 算法
- 洗牌算法
- 经典算法
- 基排序
- 冒泡排序
- 选择排序算法
- 二叉树
- 堆排序
- 快速排序
- 二分查找
- 图算法
- 有向图结构实现
- 拓扑排序
- 一致性hash算法
- 前缀树(字典树)
- 算法实现
- 斐波拉契
- 加密算法
- 简单可逆加密
- DH密钥交换(Diffie–Hellman key exchange)算法
- 代码实现
- Polybius密码(棋盘密码
- xor加密算法
- go应用
- 调试
- 构建并运行
- 包别名
- 类型转换
- error错误的2种处理方式
- 使用defer实现代码追踪
- 计算函数执行时间
- 通过内存缓存来提升性能
- make和new
- 关闭的channel可以读取数据吗
- 如何优雅的关闭channel
- channel应用场景
- map相关问题
- Go 面向包的设计和架构分层
- 设计模式实战
- 模板模式
- 责任链模式
- 组合模式实战
- 观察者模式实战
- 状态模式实战
- 区块链
- 构建一个区块链 -- Part 1: 基本原型
- 构建一个区块链 -- Part 2: 工作量证明
- 构建一个区块链 -- Part 3:持久化和命令行接口
- 从0到精通
- go常用命令
- 获取命令行参数
- http服务
- 基础
- struct 5种实例化
- md5
- Go Protobuf入门
