多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
### 关注校招、实习信息 ![](https://box.kancloud.cn/2016-09-01_57c7edd0386bb.jpg) ### Nginx 模块概述 Nginx 模块有三种角色: - 处理请求并产生输出的 Handler 模块; - 处理由 Handler 产生的输出的 Filter(滤波器)模块; - 当出现多个后台服务器时,Load-balancer (负载均衡器)模块负责选择其中一个后台服务器发送请求;       通常,服务器启动时,任何 Handler 模块都有可能去处理配置文件中的 location 定义。若出现多个Handler 模块被配置成需要处理某一特定的 location 时,最终只有其中一个Handler 模块是成功的。Handler 模块有三种返回方式: 1. 接收请求,并成功返回; 1. 接收请求,但是出错返回; 1. 拒绝请求,使默认的 Handler 模块处理该请求;       若 Handler 模块的作用是把一个请求反向代理到后台服务器,则会出现另一种类型的空间模块—— Load-balancer。 Load-balancer 负责决定将请求发送给哪个后端服务器。Nginx 目前支持两种 Load-balancer 模块:round-robin (轮询,处理请求就像打扑克时发牌那样)和"IP hash" method(众多请求时,保证来自同一 IP 的请求被分发的同一个后端服务器)。       若 Handler 模块没有产生错误返回时,则会调用 Filter 模块。每个location 配置里都可以添加多个Filter 模块 ,因此响应可以被压缩和分块。Filter 模块之间的处理顺序是在编译时就已经确定的。Filter 模块采用“CHAIN OF RESPONSIBILITY”链式的设计模式。当有请求到达时,请求依次经过这条链上的全部 Filter 模块,一个Filter 被调用并处理,接下来调用下一个Filter,直到最后一个Filter 被调用完成,Nginx 才真正完成响应流程。       总结如下,典型的处理形式如下: ~~~ Client sends HTTP request → Nginx chooses the appropriate handler based on the location config → (if applicable) load-balancer picks a backend server → Handler does its thing and passes each output buffer to the first filter → First filter passes the output to the second filter → second to third → third to fourth → etc. → Final response sent to client ~~~ ![](https://box.kancloud.cn/2016-09-01_57c7edd05325b.jpg) ~~~ ~~~ ### Nginx 模块的结构 ### 模块的配置结构       模块最多可以定义三个配置结构:main、server、location。绝大多数模块仅需要一个location 配置。名称约定如下以ngx_http_<module name>_(main|srv|loc)_conf_t为例的dav module: ~~~ typedef struct { ngx_uint_t methods; ngx_flag_t create_full_put_path; ngx_uint_t access; } ngx_http_dav_loc_conf_t; ~~~      Nginx 模块的数据结构如下定义: ~~~ /* Nginx 模块的数据结构 */ #define NGX_MODULE_V1 0, 0, 0, 0, 0, 0, 1 #define NGX_MODULE_V1_PADDING 0, 0, 0, 0, 0, 0, 0, 0 struct ngx_module_s { /* 模块类别由type成员决定,ctx_index表示当前模块在type类模块中的序号 */ ngx_uint_t ctx_index; /* index 区别与ctx_index,index表示当前模块在所有模块中的序号 */ ngx_uint_t index; /* spare 序列保留变量,暂时不被使用 */ ngx_uint_t spare0; ngx_uint_t spare1; ngx_uint_t spare2; ngx_uint_t spare3; /* 当前模块的版本 */ ngx_uint_t version; /* ctx指向特定类型模块的公共接口,例如在HTTP模块中,ctx指向ngx_http_module_t结构体 */ void *ctx; /* 处理nginx.conf中的配置项 */ ngx_command_t *commands; /* type表示当前模块的类型 */ ngx_uint_t type; /* 下面的7个函数指针是在Nginx启动或停止时,分别调用的7中方法 */ /* 在master进程中回调init_master */ ngx_int_t (*init_master)(ngx_log_t *log); /* 初始化所有模块时回调init_module */ ngx_int_t (*init_module)(ngx_cycle_t *cycle); /* 在worker进程提供正常服务之前回调init_process初始化进程 */ ngx_int_t (*init_process)(ngx_cycle_t *cycle); /* 初始化多线程 */ ngx_int_t (*init_thread)(ngx_cycle_t *cycle); /* 退出多线程 */ void (*exit_thread)(ngx_cycle_t *cycle); /* 在worker进程停止服务之前回调exit_process */ void (*exit_process)(ngx_cycle_t *cycle); /* 在master进程退出之前回调exit_master */ void (*exit_master)(ngx_cycle_t *cycle); /* 保留字段,未被使用 */ uintptr_t spare_hook0; uintptr_t spare_hook1; uintptr_t spare_hook2; uintptr_t spare_hook3; uintptr_t spare_hook4; uintptr_t spare_hook5; uintptr_t spare_hook6; uintptr_t spare_hook7; }; ~~~       在该数据结构中,其中最重要的是两个成员 ctx和commands,这里两个成员会在分别在下面的模块配置指令和模块上下文中讲解;若是HTTP 模块时,type 字段必须定义为NGX_HTTP_MODULE; ### 模块配置指令       模块指令存储在一个 ngx_command_t 类型的静态数组结构中,例如: ~~~ static ngx_command_t ngx_http_circle_gif_commands[] = { { ngx_string("circle_gif"), NGX_HTTP_LOC_CONF|NGX_CONF_NOARGS, ngx_http_circle_gif, NGX_HTTP_LOC_CONF_OFFSET, 0, NULL }, { ngx_string("circle_gif_min_radius"), NGX_HTTP_MAIN_CONF|NGX_HTTP_SRV_CONF|NGX_HTTP_LOC_CONF|NGX_CONF_TAKE1, ngx_conf_set_num_slot, NGX_HTTP_LOC_CONF_OFFSET, offsetof(ngx_http_circle_gif_loc_conf_t, min_radius), NULL }, ... ngx_null_command }; ~~~ ngx_command_t 类型定义在 [core/ngx_conf_file.h](http://lxr.nginx.org/source/src/core/ngx_conf_file.h): ~~~ struct ngx_command_s { /* 配置项名称 */ ngx_str_t name; /* 配置项类型,type将指定配置项可以出现的位置以及携带参数的个数 */ ngx_uint_t type; /* 处理配置项的参数 */ char *(*set)(ngx_conf_t *cf, ngx_command_t *cmd, void *conf); /* 在配置文件中的偏移量,conf与offset配合使用 */ ngx_uint_t conf; ngx_uint_t offset; /* 配置项读取后的处理方法,必须指向ngx_conf_post_t 结构 */ void *post; }; ~~~ name :配置指令的名称; type    :该配置的类型,指定配置项的出现位置以及可携带参数的个数,下面规定只是其中一部分,更多信息可查看文件[core/ngx_conf_file.h](http://lxr.nginx.org/source/src/core/ngx_conf_file.h): ~~~ NGX_HTTP_MAIN_CONF: directive is valid in the main config NGX_HTTP_SRV_CONF: directive is valid in the server (host) config NGX_HTTP_LOC_CONF: directive is valid in a location config NGX_HTTP_UPS_CONF: directive is valid in an upstream config NGX_CONF_NOARGS: directive can take 0 arguments NGX_CONF_TAKE1: directive can take exactly 1 argument NGX_CONF_TAKE2: directive can take exactly 2 arguments … NGX_CONF_TAKE7: directive can take exactly 7 arguments NGX_CONF_FLAG: directive takes a boolean ("on" or "off") NGX_CONF_1MORE: directive must be passed at least one argument NGX_CONF_2MORE: directive must be passed at least two arguments ~~~ set     :这是一个函数指针,当Nginx 在解析配置时,若遇到该配置指令,将会把读取到的值传递给这个函数进行分解处理。因为具体每个配置指令的值如何处理,只有定义这个配置指令的人是最清楚的。来看一下这个函数指针要求的函数原型。 ~~~ char *(*set)(ngx_conf_t *cf, ngx_command_t *cmd, void *conf); ~~~         该函数处理成功时,返回 NGX_OK,否则返回 NGX_CONF_ERROR 或者是一个自定义的错误信息的字符串。该函数传入三个类型的参数: 1. cf    :指向ngx_conf_t  结构的指针,该结构包括从配置指令传递的参数; 1. cmd:指向当前ngx_command_t 结构; 1. conf:指向模块配置结构;       为了方便实现对配置指令参数的读取,Nginx 已经默认提供了对一些标准类型的参数进行读取的函数,可以直接赋值给set 字段使用。下面是一部分已经实现的set 类型函数,更多可参考文件[core/ngx_conf_file.h](http://lxr.nginx.org/source/src/core/ngx_conf_file.h): - ngx_conf_set_flag_slot : 把 "on" 或 "off" 解析为 1 或 0; - ngx_conf_set_str_slot   : 解析字符串并保存 ngx_str_t类型; - ngx_conf_set_num_slot: 解析一个数字并将其保存为int 类型; - ngx_conf_set_size_slot: 解析数据大小 ("8k", "1m", etc.) 并将其保存为size_t; conf   :用于指示配置项所处内存的相对偏移量,仅在type 中没有设置NGX_DIRECT_CONF 和NGX_MAIN_CONF 时才生效。对于HTTP 模块,conf 必须设置,它的取值如下: - NGX_HTTP_MAIN_CONF_OFFSET:使用create_main_conf 方法产生的结构体来存储解析出的配置项参数; - NGX_HTTP_SRV_CONF_OFFSET:使用 create_srv_conf 方法产生的结构体来存储解析出的配置项参数; - NGX_HTTP_LOC_CONF_OFFSET:使用 create_loc_conf 方法产生的结构体来存储解析出的配置项参数; offset :表示当前配置项在整个存储配置项的结构体中的偏移位置。 ### 模块上下文       这是一个静态的 ngx_http_module_t 结构,它的名称是ngx_http_<module name>_module_ctx。以下是该结构的定义,具体可查阅文件 [http/ngx_http_config.h](http://lxr.nginx.org/source/src/http/ngx_http_config.h): - preconfiguration - postconfiguration - creating the main conf (i.e., do a malloc and set defaults) - initializing the main conf (i.e., override the defaults with what's in nginx.conf) - creating the server conf - merging it with the main conf - creating the location conf - merging it with the server conf ~~~ typedef struct{/* 可以把不需要调用的函数指针设置为 NULL */ /* 解析配置文件之前被调用 */ ngx_int_t (*preconfiguration)(ngx_conf_t *cf); /* 完成配置文件的解析后被调用 */ ngx_int_t (*postconfiguration)(ngx_conf_t *cf); /* 创建存储main级别的全局配置项的结构体(直属于http块) */ void *(*create_main_conf)(ngx_conf_t *cf); /* 初始化main级别的配置项 */ char *(*init_main_conf)(ngx_conf_t *cf); /* 创建存储srv级别的配置项的结构体(直属于server块) */ void *(*create_srv_conf)(ngx_conf_t *cf); /* 合并main级别与srv级别下的同名配置项 */ char *(*merge_srv_conf)(ngx_conf_t *cf, void *prev, void *conf); /* 创建存储loc级别的配置项的结构体(直属于location块) */ void *(*create_loc_conf)(ngx_conf_t *cf); /* 合并srv级别与loc级别下的同名配置项 */ char *(*merge_loc_conf)(ngx_conf_t *cf, void *prev, void *conf); }ngx_http_module_t; ~~~      在以上的结构内容中,大多数模块只使用最后两项:ngx_http_<module name>_create_loc_conf和ngx_http_<module name >_merge_loc_conf;例如: ~~~ static ngx_http_module_t ngx_http_circle_gif_module_ctx = { NULL, /* preconfiguration */ NULL, /* postconfiguration */ NULL, /* create main configuration */ NULL, /* init main configuration */ NULL, /* create server configuration */ NULL, /* merge server configuration */ ngx_http_circle_gif_create_loc_conf, /* create location configuration */ ngx_http_circle_gif_merge_loc_conf /* merge location configuration */ }; ~~~      下面针对最后两项进行说明,以下是以 circle_gif 模块为例子,该[模块源码](http://www.evanmiller.org/nginx/ngx_http_circle_gif_module.c.txt); #### create_loc_conf 函数      该函数是传入一个 ngx_conf_t 结构的参数,返回新创建模块的配置结构,在这里是返回:ngx_http_circle_gif_loc_conf_t ~~~ static void * ngx_http_circle_gif_create_loc_conf(ngx_conf_t *cf) { ngx_http_circle_gif_loc_conf_t *conf; conf = ngx_pcalloc(cf->pool, sizeof(ngx_http_circle_gif_loc_conf_t)); if (conf == NULL) { return NGX_CONF_ERROR; } conf->min_radius = NGX_CONF_UNSET_UINT; conf->max_radius = NGX_CONF_UNSET_UINT; return conf; } ~~~ #### merge_loc_conf 函数          Nginx 为不同的数据类型提供了merge 函数,可查阅 [core/ngx_conf_file.h](http://lxr.nginx.org/source/src/core/ngx_conf_file.h);merge_loc_conf 函数定义如下: ~~~ static char * ngx_http_circle_gif_merge_loc_conf(ngx_conf_t *cf, void *parent, void *child) { ngx_http_circle_gif_loc_conf_t *prev = parent; ngx_http_circle_gif_loc_conf_t *conf = child; ngx_conf_merge_uint_value(conf->min_radius, prev->min_radius, 10); ngx_conf_merge_uint_value(conf->max_radius, prev->max_radius, 20); if (conf->min_radius < 1) { ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "min_radius must be equal or more than 1"); return NGX_CONF_ERROR; } if (conf->max_radius < conf->min_radius) { ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "max_radius must be equal or more than min_radius"); return NGX_CONF_ERROR; } return NGX_CONF_OK; } ~~~ ### 模块的定义       对任何开发模块,都需要定义一个 ngx_module_t 类型的变量来说明这个模块本身的信息,它告诉了 Nginx 这个模块的一些信息。这个变量是  ngx_http_<module name>_module;例如:更多例子可查找文件 [core/ngx_conf_file.h](http://lxr.nginx.org/source/src/core/ngx_conf_file.h); ~~~ ngx_module_t ngx_http_<module name>_module = { NGX_MODULE_V1, &ngx_http_<module name>_module_ctx, /* module context */ ngx_http_<module name>_commands, /* module directives */ NGX_HTTP_MODULE, /* module type */ NULL, /* init master */ NULL, /* init module */ NULL, /* init process */ NULL, /* init thread */ NULL, /* exit thread */ NULL, /* exit process */ NULL, /* exit master */ NGX_MODULE_V1_PADDING }; ~~~ ### Handler 模块       Handler 模块必须提供一个真正的处理函数,这个函数负责处理来自客户端的请求。该函数既可以选择自己直接生成内容,也可以选择拒绝处理,并由后续的 Handler 去进行处理,或者是选择丢给后续的 Filter 模块进行处理。以下是该函数的原型: ~~~ typedef ngx_int_t (*ngx_http_handler_pt)(ngx_http_request_t *r); ~~~ 其中r 是 request 结构http 请求,包含客户端请求所有的信息,例如:request method, URI, and headers。 该函数处理成功返回NGX_OK,处理发生错误返回NGX_ERROR,拒绝处理(留给后续的Handler 进行处理)返回NGX_DECLINE。 返回NGX_OK 也就代表给客户端的响应已经生成,否则返回NGX_ERROR 就发生错误了。       Handler 模块处理过程中做了四件事情:**获取 location 配置**、**生成合适的响应**、**发送响应的 header 头部**、**发送响应的 body 包体**。 ### 获取 location 配置       获取 location 配置 指向调用 ngx_http_get_module_loc_conf 函数即可,该函数传入的参数是 request 结构和  自定义的 module 模块。例如:circle gif模块; ~~~ static ngx_int_t ngx_http_circle_gif_handler(ngx_http_request_t *r) { ngx_http_circle_gif_loc_conf_t *circle_gif_config; circle_gif_config = ngx_http_get_module_loc_conf(r, ngx_http_circle_gif_module); ... } ~~~ ### 生成合适的响应        这里主要是 request 结构,其定义如下:更多可参考文件  [http/ngx_http_request.h](http://lxr.nginx.org/source/src/http/ngx_http_request.h#L316); ~~~ typedef struct { ... /* the memory pool, used in the ngx_palloc functions */ ngx_pool_t *pool; ngx_str_t uri; ngx_str_t args; ngx_http_headers_in_t headers_in; ... } ngx_http_request_t; ~~~ 其中参数的意义如下: - uri              是 request 请求的路径,e.g. "/query.cgi". - args           是请求串参数中问号后面的参数(e.g. "name=john"). - headers_in 包含有用的stuff,例如:cookies 和browser 信息。 ### 发送响应的 header 头部      发送响应头部有函数ngx_http_send_header(r) 实现。响应的header 头部在 headers_out 结构中,定义如下:更多可参考文件 [http/ngx_http_request.h](http://lxr.nginx.org/source/src/http/ngx_http_request.h#L316); ~~~ typedef stuct { ... ngx_uint_t status; size_t content_type_len; ngx_str_t content_type; ngx_table_elt_t *content_encoding; off_t content_length_n; time_t date_time; time_t last_modified_time; .. } ngx_http_headers_out_t; ~~~      例如,一个模块设置为 Content-Type to "image/gif", Content-Length to 100, and return a 200 OK response,则其实现为: ~~~ r->headers_out.status = NGX_HTTP_OK; r->headers_out.content_length_n = 100; r->headers_out.content_type.len = sizeof("image/gif") - 1; r->headers_out.content_type.data = (u_char *) "image/gif"; ngx_http_send_header(r); ~~~      假如content_encoding 是 (ngx_table_elt_t*)类型时,则模块需要为这些类型分配内存,可以调用ngx_list_push 函数,实现如下: ~~~ r->headers_out.content_encoding = ngx_list_push(&r->headers_out.headers); if (r->headers_out.content_encoding == NULL) { return NGX_ERROR; } r->headers_out.content_encoding->hash = 1; r->headers_out.content_encoding->key.len = sizeof("Content-Encoding") - 1; r->headers_out.content_encoding->key.data = (u_char *) "Content-Encoding"; r->headers_out.content_encoding->value.len = sizeof("deflate") - 1; r->headers_out.content_encoding->value.data = (u_char *) "deflate"; ngx_http_send_header(r); ~~~ ### 发送响应的 body 包体      到此,该模块已经产生响应,并把它存储在内存中。发送包体的步骤是:首先分配响应特殊的缓冲区,然后分配缓冲区链接到chain link,然后在 chain link 调用发送函数。      1、chain links 是 Nginx  使 Handler 模块在缓冲区中产生响应。在 chain 中每个 chain link 有一个指向下一个 link 的指针。首先,模块声明缓冲区 buffer 和 chain link: ~~~ ngx_buf_t *b; ngx_chain_t out; ~~~ 2、然后分配缓冲区 buffer,使响应数据指向它: ~~~ b = ngx_pcalloc(r->pool, sizeof(ngx_buf_t)); if (b == NULL) { ngx_log_error(NGX_LOG_ERR, r->connection->log, 0, "Failed to allocate response buffer."); return NGX_HTTP_INTERNAL_SERVER_ERROR; } b->pos = some_bytes; /* first position in memory of the data */ b->last = some_bytes + some_bytes_length; /* last position */ b->memory = 1; /* content is in read-only memory */ /* (i.e., filters should copy it rather than rewrite in place) */ b->last_buf = 1; /* there will be no more buffers in the request */ ~~~ 3、接着,把模块挂载到 chain link 上: ~~~ out.buf = b; out.next = NULL; ~~~ 4、最后,发送包体: ~~~ return ngx_http_output_filter(r, &out); ~~~ ### Handler 模块挂载       Handler 模块真正的处理函数通过两种方式挂载到处理过程中:按处理阶段挂载;按需挂载。 #### 按处理阶段挂载       为了更精细地控制对于客户端请求的处理过程,Nginx 把这个处理过程划分成了11个阶段。依次列举如下: ~~~ NGX_HTTP_POST_READ_PHASE: /* 读取请求内容阶段 */ NGX_HTTP_SERVER_REWRITE_PHASE: /* Server请求地址重写阶段 */ NGX_HTTP_FIND_CONFIG_PHASE: /* 配置查找阶段: */ NGX_HTTP_REWRITE_PHASE: /* Location请求地址重写阶段 */ NGX_HTTP_POST_REWRITE_PHASE: /* 请求地址重写提交阶段 */ NGX_HTTP_PREACCESS_PHASE: /* 访问权限检查准备阶段 */ NGX_HTTP_ACCESS_PHASE: /* 访问权限检查阶段 */ NGX_HTTP_POST_ACCESS_PHASE: /* 访问权限检查提交阶段 */ NGX_HTTP_TRY_FILES_PHASE: /* 配置项try_files处理阶段 */ NGX_HTTP_CONTENT_PHASE: /* 内容产生阶段 */ NGX_HTTP_LOG_PHASE: /* 日志模块处理阶段 */ ~~~       一般情况下,我们自定义的模块,大多数是挂载在NGX_HTTP_CONTENT_PHASE阶段的。挂载的动作一般是在模块上下文调用的postconfiguration 函数中。注意:有几个阶段是特例,它不调用挂载任何的Handler,也就是你就不用挂载到这几个阶段了: ~~~ NGX_HTTP_FIND_CONFIG_PHASE NGX_HTTP_POST_ACCESS_PHASE NGX_HTTP_POST_REWRITE_PHASE NGX_HTTP_TRY_FILES_PHASE ~~~ #### 按需挂载       以这种方式挂载的Handler 也被称为content handler。当一个请求进来以后,Nginx 从NGX_HTTP_POST_READ_PHASE 阶段开始依次执行每个阶段中所有 Handler。执行到  NGX_HTTP_CONTENT_PHASE 阶段时,如果这个location 有一个对应的content handler 模块,那么就去执行这个content handler 模块真正的处理函数。否则继续依次执行NGX_HTTP_CONTENT_PHASE 阶段中所有content phase handlers,直到某个函数处理返回NGX_OK 或者NGX_ERROR。但是使用这个方法挂载上去的handler 有一个特点是必须在NGX_HTTP_CONTENT_PHASE 阶段才能被执行。如果你想自己的handler 更早的阶段被执行,那就不要使用这种挂载方式。       以下是例子: ~~~ circle gif ngx_command_t looks like this: { ngx_string("circle_gif"), NGX_HTTP_LOC_CONF|NGX_CONF_NOARGS, ngx_http_circle_gif, 0, 0, NULL } ~~~ 挂载函数: ~~~ static char * ngx_http_circle_gif(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) { ngx_http_core_loc_conf_t *clcf; clcf = ngx_http_conf_get_module_loc_conf(cf, ngx_http_core_module); clcf->handler = ngx_http_circle_gif_handler; return NGX_CONF_OK; } ~~~ ### Handler 模块编写 Handler 模块编写步骤如下: 1. 编写模块基本结构:包括模块的定义,模块上下文结构,模块的配置结构等; 1. 实现 handler 的挂载函数;根据模块的需求选择正确的挂载方式; 1. 编写 handler 处理函数;模块的功能主要通过这个函数来完成; ### Filter 模块       Filter 处理由Handler 模块产生的响应,即仅处理由服务器发往客户端的HTTP 响应,并不处理由客户端发往服务器的 HTTP 请求。Filter 模块包括过滤头部(Header Filter)和过滤包体(Body Filter ),Filter 模块过滤头部处理HTTP 的头部(HTTP headers),Filter 包体处理响应内容(response content)(即HTTP 包体),这两个阶段可以对HTTP 响应头部和内容进行修改。       Filter 模块 HTTP 响应的方法如下:定义在文件 [src/http/ngx_http_core_module.h](http://lxr.nginx.org/source/src/http/ngx_http_core_module.h) ~~~ typedef ngx_int_t (*ngx_http_output_header_filter_pt) (ngx_http_request_t *r); typedef ngx_int_t (*ngx_http_output_body_filter_pt) (ngx_http_request_t *r, ngx_chain_t *chain); ~~~ 其中,参数 r 是当前的请求,chain 是待发送的 HTTP  响应包体;       所有 HTTP 过滤模块都需要实现上面的两个方法,在 HTTP 过滤模块组成的链表中,链表元素就是处理方法。HTTP 框架定义了链表入口: ~~~ extern ngx_http_output_header_filter_pt ngx_http_top_header_filter; extern ngx_http_output_body_filter_pt ngx_http_top_body_filter; ~~~       过滤模块链表中通过 next 遍历,其定义如下:  ~~~ static ngx_http_output_header_filter_pt ngx_http_next_header_filter; static ngx_http_output_body_filter_pt ngx_http_next_body_filter; ~~~       当执行发送 HTTP 头部或 HTTP 响应包体时,HTTP 框架是从  ngx_http_top_header_filter 和 ngx_http_top_body_filter 开始遍历 HTTP 头部过滤模块和 HTTP 包体过来模块。其源码实现在文件:[src/http/ngx_http_core_module.c](http://lxr.nginx.org/source/src/http/ngx_http_core_module.c) ~~~ /* 发送 HTTP 响应头部 */ ngx_int_t ngx_http_send_header(ngx_http_request_t *r) { if (r->header_sent) { ngx_log_error(NGX_LOG_ALERT, r->connection->log, 0, "header already sent"); return NGX_ERROR; } if (r->err_status) { r->headers_out.status = r->err_status; r->headers_out.status_line.len = 0; } return ngx_http_top_header_filter(r); } /* 发送HTTP 响应包体 */ ngx_int_t ngx_http_output_filter(ngx_http_request_t *r, ngx_chain_t *in) { ngx_int_t rc; ngx_connection_t *c; c = r->connection; ngx_log_debug2(NGX_LOG_DEBUG_HTTP, c->log, 0, "http output filter \"%V?%V\"", &r->uri, &r->args); rc = ngx_http_top_body_filter(r, in); if (rc == NGX_ERROR) { /* NGX_ERROR may be returned by any filter */ c->error = 1; } return rc; } ~~~ ### Filter 模块相关结构       Filter 模块是采用链表形式的,其基本结构是ngx_chain_t 和 ngx_buf_t;这两种结构定义如下: ~~~ typedef struct ngx_chain_s ngx_chain_t; struct ngx_chain_s { ngx_buf_t *buf; ngx_chain_t *next; }; struct ngx_buf_s { u_char *pos; /* 当前buffer真实内容的起始位置 */ u_char *last; /* 当前buffer真实内容的结束位置 */ off_t file_pos; /* 在文件中真实内容的起始位置 */ off_t file_last; /* 在文件中真实内容的结束位置 */ u_char *start; /* buffer内存的开始分配的位置 */ u_char *end; /* buffer内存的结束分配的位置 */ ngx_buf_tag_t tag; /* buffer属于哪个模块的标志 */ ngx_file_t *file; /* buffer所引用的文件 */ /* 用来引用替换过后的buffer,以便当所有buffer输出以后, * 这个影子buffer可以被释放。 */ ngx_buf_t *shadow; /* the buf's content could be changed */ unsigned temporary:1; /* * the buf's content is in a memory cache or in a read only memory * and must not be changed */ unsigned memory:1; /* the buf's content is mmap()ed and must not be changed */ unsigned mmap:1; unsigned recycled:1; /* 内存可以被输出并回收 */ unsigned in_file:1; /* buffer的内容在文件中 */ /* 马上全部输出buffer的内容, gzip模块里面用得比较多 */ unsigned flush:1; /* 基本上是一段输出链的最后一个buffer带的标志,标示可以输出, * 有些零长度的buffer也可以置该标志 */ unsigned sync:1; /* 所有请求里面最后一块buffer,包含子请求 */ unsigned last_buf:1; /* 当前请求输出链的最后一块buffer */ unsigned last_in_chain:1; /* shadow链里面的最后buffer,可以释放buffer了 */ unsigned last_shadow:1; /* 是否是暂存文件 */ unsigned temp_file:1; /* 统计用,表示使用次数 */ /* STUB */ int num; }; ~~~ ### Filter 过滤头部 header filter 包含三个基本步骤: 1. 决定是否处理响应; 1. 对响应进行处理; 1. 调用下一个 filter;       例如下面的"not modified" header filter:其中 headers_out 结构可参考文件 [http/ngx_http_request.h](http://lxr.nginx.org/source/src/http/ngx_http_request.h#L220); ~~~ static ngx_int_t ngx_http_not_modified_header_filter(ngx_http_request_t *r) { time_t if_modified_since; if_modified_since = ngx_http_parse_time(r->headers_in.if_modified_since->value.data, r->headers_in.if_modified_since->value.len); /* step 1: decide whether to operate */ if (if_modified_since != NGX_ERROR && if_modified_since == r->headers_out.last_modified_time) { /* step 2: operate on the header */ r->headers_out.status = NGX_HTTP_NOT_MODIFIED; r->headers_out.content_type.len = 0; ngx_http_clear_content_length(r); ngx_http_clear_accept_ranges(r); } /* step 3: call the next filter */ return ngx_http_next_header_filter(r); } ~~~ ### Filter 过滤包体       Filter 包体只能在chain link缓冲区buffer 中操作。模块必须决定是否修改输入缓冲区,或分配新的缓冲区替换当前缓冲区,或是在当前缓冲区之后还是之前插入新的缓冲区。很多模块接收多个缓冲区,导致这些模块在不完整的chain 缓冲区中操作。Filter 包体操作如下: ~~~ static ngx_int_t ngx_http_chunked_body_filter(ngx_http_request_t *r, ngx_chain_t *in); ~~~ 以下是一个例子: ~~~ /* * Let's take a simple example. * Suppose we want to insert the text "<l!-- Served by Nginx -->" to the end of every request. * First, we need to figure out if the response's final buffer is included in the buffer chain we were given. * Like I said, there's not a fancy API, so we'll be rolling our own for loop: */ ngx_chain_t *chain_link; int chain_contains_last_buffer = 0; chain_link = in; for ( ; ; ) { if (chain_link->buf->last_buf) chain_contains_last_buffer = 1; if (chain_link->next == NULL) break; chain_link = chain_link->next; } /* * Now let's bail out if we don't have that last buffer: */ if (!chain_contains_last_buffer) return ngx_http_next_body_filter(r, in); /* * Super, now the last buffer is stored in chain_link. * Now we allocate a new buffer: */ ngx_buf_t *b; b = ngx_calloc_buf(r->pool); if (b == NULL) { return NGX_ERROR; } /* * And put some data in it: */ b->pos = (u_char *) "<!-- Served by Nginx -->"; b->last = b->pos + sizeof("<!-- Served by Nginx -->") - 1; /* * And hook the buffer into a new chain link: */ ngx_chain_t *added_link; added_link = ngx_alloc_chain_link(r->pool); if (added_link == NULL) return NGX_ERROR; added_link->buf = b; added_link->next = NULL; /* * Finally, hook the new chain link to the final chain link we found before: */ chain_link->next = added_link; /* * And reset the "last_buf" variables to reflect reality: */ chain_link->buf->last_buf = 0; added_link->buf->last_buf = 1; /* * And pass along the modified chain to the next output filter: */ return ngx_http_next_body_filter(r, in); /* * The resulting function takes much more effort than what you'd do with, say, mod_perl ($response->body =~ s/$/<!-- Served by mod_perl -->/), * but the buffer chain is a very powerful construct, allowing programmers to process data incrementally so that the client gets something as soon as possible. * However, in my opinion, the buffer chain desperately needs a cleaner interface so that programmers can't leave the chain in an inconsistent state. * For now, manipulate it at your own risk. */ ~~~ ### Filter 模块挂载       Filters 模块和Handler 模块一样,也是挂载到post-configuration ,如下面代码所示: ~~~ static ngx_http_module_t ngx_http_chunked_filter_module_ctx = { NULL, /* preconfiguration */ ngx_http_chunked_filter_init, /* postconfiguration */ ... }; ~~~       其中 ngx_http_chunked_filter_init 处理如下定义: ~~~ static ngx_int_t ngx_http_chunked_filter_init(ngx_conf_t *cf) { ngx_http_next_header_filter = ngx_http_top_header_filter; ngx_http_top_header_filter = ngx_http_chunked_header_filter; ngx_http_next_body_filter = ngx_http_top_body_filter; ngx_http_top_body_filter = ngx_http_chunked_body_filter; return NGX_OK; } ~~~ 由于 Filter 模块是 “CHAIN OF RESPONSIBILITY” 链表模式的。Handler 模块生成响应后,Filter 模块调用两个函数:ngx_http_output_filter 和 ngx_http_send_header,其中ngx_http_output_filter 函数是调用全局函数 ngx_http_top_body_filter;ngx_http_send_header 函数是调用全局函数 ngx_http_top_header_filter。 ~~~ ngx_int_t ngx_http_send_header(ngx_http_request_t *r) { ... return ngx_http_top_header_filter(r); } ngx_int_t ngx_http_output_filter(ngx_http_request_t *r, ngx_chain_t *in) { ngx_int_t rc; ngx_connection_t *c; c = r->connection; rc = ngx_http_top_body_filter(r, in); if (rc == NGX_ERROR) { /* NGX_ERROR may be returned by any filter */ c->error = 1; } return rc; } ~~~ Filter 模块的执行方式如下图所示: ![](https://box.kancloud.cn/2016-09-01_57c7edd074156.jpg) ### Filter 模块编写 Filter 模块编写步骤如下 - 编写基本结构:模块定义,上下文结构,基本结构; - 初始化过滤模块:把本模块中处理的 HTTP 头部的 ngx_http_output_header_filter_pt 方法与处理HTTP 包体的ngx_http_output_body_filter_pt 方法插入到过滤模块链表首部; - 实现处理 HTTP 响应的方法:处理 HTTP 头部,即 ngx_http_output_header_filter_pt 方法的实现,处理HTTP 包体的方法,即ngx_http_output_body_filter_pt 方法的实现; - 编译安装; ### 开发 Nginx 新模块       把自己开发的模块编译到 Nginx 中需要编写两个文件: 1. "config",该文件会被 ./configure 包含; 1. "ngx_http_<your module>_module.c",该文件是定义模块的功能;       config 文件的编写如下: ~~~ /* * "config" for filter modules: */ ngx_addon_name=ngx_http_<your module>_module /* 模块的名称 */ HTTP_AUX_FILTER_MODULES="$HTTP_AUX_FILTER_MODULES ngx_http_<your module>_module" /* 保存所有 HTTP 模块*/ NGX_ADDON_SRCS="$NGX_ADDON_SRCS $ngx_addon_dir/ngx_http_<your module>_module.c" /* 指定新模块的源码路径 */ /* * "config" for other modules: */ ngx_addon_name=ngx_http_<your module>_module HTTP_MODULES="$HTTP_MODULES ngx_http_<your module>_module" NGX_ADDON_SRCS="$NGX_ADDON_SRCS $ngx_addon_dir/ngx_http_<your module>_module.c" ~~~       关于 "ngx_http_<your module>_module.c" 文件的编写,可参考上面的Handler 模块,同时可参考Nginx 现有的模块:[src/http/modules/](http://lxr.nginx.org/source/src/http/modules/);例如下面的“Hello World ”代码: ~~~ #include <ngx_config.h> #include <ngx_core.h> #include <ngx_http.h> typedef struct { ngx_str_t hello_string; ngx_int_t hello_counter; }ngx_http_hello_loc_conf_t; static ngx_int_t ngx_http_hello_init(ngx_conf_t *cf); static void *ngx_http_hello_create_loc_conf(ngx_conf_t *cf); static char *ngx_http_hello_string(ngx_conf_t *cf, ngx_command_t *cmd, void *conf); static char *ngx_http_hello_counter(ngx_conf_t *cf, ngx_command_t *cmd, void *conf); static ngx_command_t ngx_http_hello_commands[] = { { ngx_string("hello_string"), NGX_HTTP_LOC_CONF|NGX_CONF_NOARGS|NGX_CONF_TAKE1, ngx_http_hello_string, NGX_HTTP_LOC_CONF_OFFSET, offsetof(ngx_http_hello_loc_conf_t, hello_string), NULL }, { ngx_string("hello_counter"), NGX_HTTP_LOC_CONF|NGX_CONF_FLAG, ngx_http_hello_counter, NGX_HTTP_LOC_CONF_OFFSET, offsetof(ngx_http_hello_loc_conf_t, hello_counter), NULL }, ngx_null_command }; /* static u_char ngx_hello_default_string[] = "Default String: Hello, world!"; */ static int ngx_hello_visited_times = 0; static ngx_http_module_t ngx_http_hello_module_ctx = { NULL, /* preconfiguration */ ngx_http_hello_init, /* postconfiguration */ NULL, /* create main configuration */ NULL, /* init main configuration */ NULL, /* create server configuration */ NULL, /* merge server configuration */ ngx_http_hello_create_loc_conf, /* create location configuration */ NULL /* merge location configuration */ }; ngx_module_t ngx_http_hello_module = { NGX_MODULE_V1, &ngx_http_hello_module_ctx, /* module context */ ngx_http_hello_commands, /* module directives */ NGX_HTTP_MODULE, /* module type */ NULL, /* init master */ NULL, /* init module */ NULL, /* init process */ NULL, /* init thread */ NULL, /* exit thread */ NULL, /* exit process */ NULL, /* exit master */ NGX_MODULE_V1_PADDING }; static ngx_int_t ngx_http_hello_handler(ngx_http_request_t *r) { ngx_int_t rc; ngx_buf_t *b; ngx_chain_t out; ngx_http_hello_loc_conf_t* my_conf; u_char ngx_hello_string[1024] = {0}; ngx_uint_t content_length = 0; ngx_log_error(NGX_LOG_EMERG, r->connection->log, 0, "ngx_http_hello_handler is called!"); my_conf = ngx_http_get_module_loc_conf(r, ngx_http_hello_module); if (my_conf->hello_string.len == 0 ) { ngx_log_error(NGX_LOG_EMERG, r->connection->log, 0, "hello_string is empty!"); return NGX_DECLINED; } if (my_conf->hello_counter == NGX_CONF_UNSET || my_conf->hello_counter == 0) { ngx_sprintf(ngx_hello_string, "%s", my_conf->hello_string.data); } else { ngx_sprintf(ngx_hello_string, "%s Visited Times:%d", my_conf->hello_string.data, ++ngx_hello_visited_times); } ngx_log_error(NGX_LOG_EMERG, r->connection->log, 0, "hello_string:%s", ngx_hello_string); content_length = ngx_strlen(ngx_hello_string); /* we response to 'GET' and 'HEAD' requests only */ if (!(r->method & (NGX_HTTP_GET|NGX_HTTP_HEAD))) { return NGX_HTTP_NOT_ALLOWED; } /* discard request body, since we don't need it here */ rc = ngx_http_discard_request_body(r); if (rc != NGX_OK) { return rc; } /* set the 'Content-type' header */ /* *r->headers_out.content_type.len = sizeof("text/html") - 1; *r->headers_out.content_type.data = (u_char *)"text/html"; */ ngx_str_set(&r->headers_out.content_type, "text/html"); /* send the header only, if the request type is http 'HEAD' */ if (r->method == NGX_HTTP_HEAD) { r->headers_out.status = NGX_HTTP_OK; r->headers_out.content_length_n = content_length; return ngx_http_send_header(r); } /* allocate a buffer for your response body */ b = ngx_pcalloc(r->pool, sizeof(ngx_buf_t)); if (b == NULL) { return NGX_HTTP_INTERNAL_SERVER_ERROR; } /* attach this buffer to the buffer chain */ out.buf = b; out.next = NULL; /* adjust the pointers of the buffer */ b->pos = ngx_hello_string; b->last = ngx_hello_string + content_length; b->memory = 1; /* this buffer is in memory */ b->last_buf = 1; /* this is the last buffer in the buffer chain */ /* set the status line */ r->headers_out.status = NGX_HTTP_OK; r->headers_out.content_length_n = content_length; /* send the headers of your response */ rc = ngx_http_send_header(r); if (rc == NGX_ERROR || rc > NGX_OK || r->header_only) { return rc; } /* send the buffer chain of your response */ return ngx_http_output_filter(r, &out); } static void *ngx_http_hello_create_loc_conf(ngx_conf_t *cf) { ngx_http_hello_loc_conf_t* local_conf = NULL; local_conf = ngx_pcalloc(cf->pool, sizeof(ngx_http_hello_loc_conf_t)); if (local_conf == NULL) { return NULL; } ngx_str_null(&local_conf->hello_string); local_conf->hello_counter = NGX_CONF_UNSET; return local_conf; } /* static char *ngx_http_hello_merge_loc_conf(ngx_conf_t *cf, void *parent, void *child) { ngx_http_hello_loc_conf_t* prev = parent; ngx_http_hello_loc_conf_t* conf = child; ngx_conf_merge_str_value(conf->hello_string, prev->hello_string, ngx_hello_default_string); ngx_conf_merge_value(conf->hello_counter, prev->hello_counter, 0); return NGX_CONF_OK; }*/ static char * ngx_http_hello_string(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) { ngx_http_hello_loc_conf_t* local_conf; local_conf = conf; char* rv = ngx_conf_set_str_slot(cf, cmd, conf); ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "hello_string:%s", local_conf->hello_string.data); return rv; } static char *ngx_http_hello_counter(ngx_conf_t *cf, ngx_command_t *cmd, void *conf) { ngx_http_hello_loc_conf_t* local_conf; local_conf = conf; char* rv = NULL; rv = ngx_conf_set_flag_slot(cf, cmd, conf); ngx_conf_log_error(NGX_LOG_EMERG, cf, 0, "hello_counter:%d", local_conf->hello_counter); return rv; } static ngx_int_t ngx_http_hello_init(ngx_conf_t *cf) { ngx_http_handler_pt *h; ngx_http_core_main_conf_t *cmcf; cmcf = ngx_http_conf_get_module_main_conf(cf, ngx_http_core_module); h = ngx_array_push(&cmcf->phases[NGX_HTTP_CONTENT_PHASE].handlers); if (h == NULL) { return NGX_ERROR; } *h = ngx_http_hello_handler; return NGX_OK; } ~~~       写好上面的两个文件后,在编译 Nginx 时,步骤如下: ~~~ ./configure --add-module=path/to/your/new/module/directory make make install ~~~ 参考资料: 《[Emiller's Guide To Nginx Module Development](http://www.evanmiller.org/nginx-modules-guide.html)》 《[nginx模块开发篇](http://tengine.taobao.org/book/module_development.html)》 《[https://github.com/simpl/ngx_devel_kit](https://github.com/simpl/ngx_devel_kit)》