多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
这是学习stm32的第四天了,怎么说呢?感触最大的是,细心最重要,为什么呢?昨天,一个二进制到十六进制换算出来问题,导致一个问题纠结了一下午,今天,在初始化时钟的时候,把9写成10,导致,串口到下午才调试好。 好吧,现在开始说串口。 在我的板子上,USART1对应的PIN是 PA10 ---RX INPUT  Mode:0x8 PA9---TX OUTPUT  Mode:0xb 其实串口初始化也就分下面几步: (1)PIN管脚时钟使能,特殊功能寄存器使能,即GPIOA和USART1时钟使能; (2)USART管脚配置,PA10配置成输入模式:0x8;PA9配置成输出模式;【前面讲过怎么配置】 (3)USART Reset;记得关闭Reset; (4)USART 波特率设置; (5)USART寄存器配置; (6)USART中断配置; 还是老规矩,先附上代码: ~~~ /* USART0 PA10 --- RX INPUT M:0x8 PA9 --- TX OUTPUT M:0xb */ #define CPU_RATE_72M 72 int rs232_init(u32 cpu_rate,u32 baud) { float div; u16 div_int = 0; u16 div_float = 0; /* Get Div Baud */ div = (float)(cpu_rate*1000000)/(16*baud); div_int = div; div_float = 16*(div - div_int); div_int <<= 4; div_int += div_float; RCC->APB2ENR |= 1<<2; RCC->APB2ENR |= 1<<14; GPIOA->CRH &= ~(0xff<<4); //clear CRH at bit 10:9 GPIOA->CRH |= 0x8b << 4; //set CRH at bit 10:9 RCC->APB2RSTR |= 1<<14; //Reset USART0 RCC->APB2RSTR &= ~(1<<14);//Stop Reset USART0 /* config USART */ USART1->BRR = div_int; // Set Baud Rate USART1->CR1 &= ~(1<<12); // Set Data bit :8bit USART1->CR1 &= ~(1<<10); // CRC USART1->CR1 |= 1<<8; // Enable PE Interrupt USART1->CR1 |= 1<<5; // Enable RX Interrupt USART1->CR1 |= 3<<2; //Enable RX TX USART1->CR2 &= ~(3<<12); // Stop Bit :00 => 1SB USART1->CR1 |= 1<<13; // Enable USART init_interrupt(2,37,3,3); return 0; } ~~~ APB2ENR寄存器如下,我们要使能IOPA和USART1的时钟所以,APB2ENR |= (1<<2) | (1<<14) ![](https://box.kancloud.cn/2016-06-21_576915b2036f7.jpg) APB2RSTR是外设复位寄存器:我们最好把USART1重新复位下,来确保系统的稳定性: ![](https://box.kancloud.cn/2016-06-21_576915b303705.jpg) 但是,在复位完成之后,一定要对该控制位置零,停止复位; APB2RSTR |= 1<<14; APB2RSTR&=~(1<<14); USART波特率的设置是整个配置中比较关键的,stm32厂商已经给了我们一个公式: ![](https://box.kancloud.cn/2016-06-21_576915b31b2db.jpg) USARTDIV计算出来,然后需要换算成USART_BRR寄存器需要的模式:我们呢可以先来研究下BRR寄存器: ![](https://box.kancloud.cn/2016-06-21_576915b333a9c.jpg) 他是把整数部分存放在4-15bit,小数部分存放在0~3bit 至于小数和整数部分的换算方法,STM也给提供了一个例子: ![](https://box.kancloud.cn/2016-06-21_576915b34e18a.jpg) 波特率计算完了,我们就需要对USART的控制寄存器进行设置,USART有三个控制器CR1,CR2,CR3 其中常用的只有CR1,CR2中只需配置一个参数。 关于这两个寄存器的详细信息请看25.6.4~26.6.7章,不过基本上看我的注释就可以看懂; USART的中断配置,跟昨天那个按键中断配置一样,他的中断向量号是37 今天我重新把中断配置函数进行了整理,大家可以拿去用: ~~~ void init_interrupt(u8 group,u8 inter_id,u8 preempting,u8 subpriority) { u32 aircr; u8 ip; /* Set Group :2 */ aircr = SCB->AIRCR; //Get AIRCR register aircr &= 0x0000f8ff; //Clear Password & PriGroup aircr |= 0x05fa0000; //Set Password aircr |= ((~group&0x7)<<8); //Set PriGroup Group:2 0000 0010 => 1111 1101 [5 = 0101b]<<8 SCB->AIRCR = aircr; //Set AIRCR /* * Group 2 2:2 * 0~3 : 0~3 * Set Preempting = 0 Subpriority = 0 * 1001 0000b = 0x00; */ if(inter_id<32) NVIC->ISER[0] = 1<< inter_id; else NVIC->ISER[1] = 1<<(inter_id-32); //EXIT15_10 vector:37 switch(group) { case 0: ip = 0x0f&subpriority;break; case 1: ip = (0x08&preempting) | (0x07&subpriority);break; case 2: ip = (0x0C&preempting) | (0x03&subpriority);break; case 3: ip = (0x0e&preempting) | (0x01&subpriority);break; case 4: ip = 0x0f&preempting;break; default: ip = 0x00;break; } NVIC->IP[inter_id] = 0xf0&(ip<<4); } ~~~ 他的发送和中断接收函数也都很简单,其中发送和接受标志位,在对数据进行写,或者读的时候他会自动清除 ~~~ int rs232_send_byte(u8 byte) { USART1->DR = byte; while(0 == (USART1->SR&(1<<6))); return 1; } void USART1_IRQHandler(void) { if(USART1->SR&(1<<5)) { rs232_send_byte(USART1->DR); } } ~~~ 有了串口,我们以后调试程序就更方便,我们可以直接把寄存器值读出来,然后对初始化的寄存器值进行研究。