多应用+插件架构,代码干净,二开方便,首家独创一键云编译技术,文档视频完善,免费商用码云13.8K 广告
# Search Range in Binary Search Tree ### Source - lintcode: [(11) Search Range in Binary Search Tree](http://www.lintcode.com/en/problem/search-range-in-binary-search-tree/) ### Problem Given two values k1 and k2 (where k1 < k2) and a root pointer to a BinarySearch Tree. Find all the keys of tree in range k1 to k2. i.e. print all xsuch that k1<=x<=k2 and x is a key of given BST. Return all the keys inascending order. #### Example If k1 = `10` and k2 = `22`, then your function should return `[12, 20, 22]`. ~~~ 20 / \ 8 22 / \ 4 12 ~~~ ### 题解 - 中序遍历 中等偏易难度题,本题涉及到二叉查找树的按序输出,应马上联想到二叉树的中序遍历,对于二叉查找树而言,使用中序遍历即可得到有序元素。对每次访问的元素加以判断即可得最后结果,由于 OJ 上给的模板不适合递归处理,新建一个私有方法即可。 ### C++ ~~~ /** * Definition of TreeNode: * class TreeNode { * public: * int val; * TreeNode *left, *right; * TreeNode(int val) { * this->val = val; * this->left = this->right = NULL; * } * } */ class Solution { public: /** * @param root: The root of the binary search tree. * @param k1 and k2: range k1 to k2. * @return: Return all keys that k1<=key<=k2 in ascending order. */ vector<int> searchRange(TreeNode* root, int k1, int k2) { vector<int> result; inorder_dfs(result, root, k1, k2); return result; } private: void inorder_dfs(vector<int> &ret, TreeNode *root, int k1, int k2) { if (NULL == root) { return; } inorder_dfs(ret, root->left, k1, k2); if ((root->val >= k1) && (root->val <= k2)) { ret.push_back(root->val); } inorder_dfs(ret, root->right, k1, k2); } }; ~~~ ### Java ~~~ /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode left, right; * public TreeNode(int val) { * this.val = val; * this.left = this.right = null; * } * } */ public class Solution { /** * @param root: The root of the binary search tree. * @param k1 and k2: range k1 to k2. * @return: Return all keys that k1<=key<=k2 in ascending order. */ public ArrayList<Integer> searchRange(TreeNode root, int k1, int k2) { ArrayList<Integer> result = new ArrayList<Integer>(); helper(root, k1, k2, result); return result; } private void helper(TreeNode root, int k1, int k2, ArrayList<Integer> result) { if (root == null) return; // in-order binary tree iteration helper(root.left, k1, k2, result); if (k1 <= root.val && root.val <= k2) { result.add(root.val); } helper(root.right, k1, k2, result); } } ~~~ ### 源码分析 以上为题解思路的简易实现,可以优化的地方为「剪枝过程」的处理——不递归遍历不可能有解的节点。优化后的`inorder_dfs`如下: ~~~ void inorder_dfs(vector<int> &ret, TreeNode *root, int k1, int k2) { if (NULL == root) { return; } if ((NULL != root->left) && (root->val > k1)) { inorder_dfs(ret, root->left, k1, k2); } // cut-off for left sub tree if ((root->val >= k1) && (root->val <= k2)) { ret.push_back(root->val); } // add valid value if ((NULL != root->right) && (root->val < k2)) { inorder_dfs(ret, root->right, k1, k2); } // cut-off for right sub tree } ~~~ ****> 「剪枝」的判断条件容易出错,应将当前节点的值与`k1`和`k2`进行比较而不是其左子节点或右子节点的值。